SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В книге приводятся все задания Математического праздника — самой массовой олимпиады по математике для учеников 6–7 классов города Москвы. Почти ко всем заданиям даны ответы, указания и решения.
Книга, рассчитанная на школьников 5–8 классов, будет полезна также их учителям, родителям, руководителям кружков и всем, кто любит решать занимательные задачи.
Первое и второе издания книги увидели свет в 1998 и 2005 году, настоящее (третье) издание включает материалы всех Математических праздников с 1990 по 2008 год.
В брошюре рассказывается о том, как теория множеств обходится с подобными ситуациями, а также о других парадоксах, в том числе возникающих при рассмотрении аксиомы выбора. В частности, вы узнаете, как из одного апельсина сделать два.
В приложении 3 приведены задачи, самостоятельное решение которых поможет читателю более полно разобраться в материале брошюры.
Текст брошюры представляет собой обработанные записи лекций, прочитанных автором 8 апреля 2000 года на Малом мехмате для школьников 9—11 классов (запись Е. Н. Осьмовой) и в июле 2001 года в рамках летней школы «Современная математика» для школьников 10—11 классов и студентов 1—2 курса (запись Ю. Л. Притыкина).
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.
Я испытывал двойственные чувства, готовя книгу ко второму изданию. Мне было ясно, что надо исправить все ошибки и опечатки, найденные со времени первого издания. Это было легко, потому что ошибки были незначительны, а опечатки немногочисленны.
Труднее было решить, надо ли дополнить текст или хотя бы список литературы. В конце концов я решил, что книга в этом не нуждается. Главная ценность математической книги состоит в том, что она учит читателя элементам математического языка и некоторым навыкам. Ни одна книга не может полностью исчерпать сколько-нибудь серьезную область математики, как бы ни старался автор.
Эта брошюра основана на лекциях, дважды прочитанных автором в Красноярской краевой летней школе по естественным наукам школьникам, окончившим 10-й класс.
В ней кратко объясняются основные понятия математического анализа (производная и интеграл) и даются простейшие приложения к физическим задачам, основанные на составлении и решении дифференциальных уравнений.
Брошюра рассчитана на широкий круг читателей: школьников, студентов, учителей.
В предлагаемой работе исследуются эллипсы, параболы и гиперболы в многослойной системе - совмещенных полярно-декартовых координатах. Этот эффективный метод придуман в древней Греции, однако сейчас в математике используется редко.
С новых позиций доказаны многочисленные классические результаты, а также совершенно новые. В последних главах приведены несколько коротких биографий. Изложение ведется доступно, но строго. Работа предназначена широкому кругу читателей: школьникам старших классов, студентам, преподавателям, инженерам, математикам.
Книга содержит учебные материалы, составлявшие содержание курса «математического анализа» в математическом классе 57 школы (выпуск 2000 года, класс «В»).
В неё включены задачи вечерней математической школы и собеседований, задачи всех четырёх лет обучения (включая контрольные работы и экзамены), а также список тем лекций, читавшихся школьникам.
Книга содержит задачи по программированию различной трудности. Большинство задач приводятся с решениями. Цель книги | научить основным методам построения корректных и быстрых алгоритмов.
Для учителей информатики, старшеклассников, студентов младших курсов высших учебных заведений. Пособие может быть использовано на кружковых и факультативных занятиях в общеобразовательных учреждениях, в школах с углублённым изучением математики и информатики, а также в иных целях, не противоречащих законодательству РФ.
Предыдущее издание книги вышло в 2017 г.
Приведено доказательство «основной теоремы арифметики» о единственности разложения целых чисел на простые множители, а также несколько доказательств бесконечности множества простых чисел.
Брошюра написана по материалам лекции для школьников 10{11 классов, прочитанной автором по приглашению А. В. Спивака.
Предыдущее издание книги вышло в 2008 году.
В жизни «перестановками» называют самые разные вещи; эта книжка содержит начальные сведения о том, что математики называют «группой перестановок конечного множества». Мы покажем, как можно разделить перестановки на «чётные» и «нечётные» и как это помогает проанализировать известную головоломку c 15 фишками в квадрате 4×4, как перестановка разлагается в циклы и почему это бывает полезно, почему повторение одного и того же действия с «кубиком Рубика» рано или поздно вернёт его в исходное положение, и разберём задачи, при решении которых перестановки оказываются полезными.
Обычно эти вопросы относят к курсам «высшей алгебры» для студентов младших курсов, но они вполне элементарны, и никаких сведений, выходящих за пределы средних классов школы, мы не используем. (Хотя, конечно, привычка к несложным математическим рассуждениям пригодится.)
Математики традиционно (и не без оснований) гордятся «математической строгостью» — точностью и полнотой доказательств теорем на основе определений и аксиом. Насколько этот идеал достигнут в школьном курсе математики? Можно ли его достигнуть? И нужно ли к этому стремиться?
В брошюре разбираются несколько деликатных вопросов школьного курса математики (в чём проблема, как её пытаются решить в школьных учебниках и как её можно было бы решать). Изложение рассчитано на любознательных школьников, квалифицированных учителей и добросовестных экзаменаторов.
Первое издание книги вышло в 2006 г.