SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: Линейные и квазилинейные уравнения параболического типа

Уравнения параболического типа встречаются во многих отделах математики и математической физики, и аспекты, в которых они исследуются, очень разнообразны. Наиболее часто (а в смежных областях почти исключительно) встречаются уравнения второго порядка.

Такие уравнения (и некоторые классы систем второго порядка), линейные и квазилинейные, и составляют предмет исследования данной книги. Мы изучаем эти уравнения главным образом в направлении разрешимости для них краевых задач и анализа связей между гладкостью решений и гладкостью известных функций, входящих в задачу.

Основным условием, которое предполагается выполненным для всех рассматриваемых уравнений, является условие равномерной параболичности. Для таких уравнений удалось дать достаточно полные ответы на центральные вопросы о разрешимости указанных выше задач и установить ряд точных зависимостей между свойствами известных функций, требуемых начальными данными, и других к наиболее употребительным функциональным пространствам.

Формат документа: pdf, djvu
Год публикации: 1967
Кол-во страниц: 736 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Методы математической физики. Том 2.

Этот том, в основном независимый от предыдущего, содержит систематическую теорию дифференциальных уравнений с частными производными, рассматриваемую с точки зрения математической физики. В последней, седьмой, главе приводятся на основе прямых методов вариационного исчисления доказательства существования решений для краевых задач и задач о собственных значениях эллиптических дифференциальных уравнений — в том объеме, в каком эти задачи встречались в предшествующем изложении.

Формат документа: pdf, djvu
Год публикации: 1945
Кол-во страниц: 620 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Методы математической физики. Том 1.

Книга Куранта-Гильберта «Методы математической физики» еще до своего появления на русском языке приобрела заслуженную популярность среди советских математиков и физиков. Ее выход в свет у нас является ценным вкладом в нашу математическую культуру.

Меньше всего она претендует на роль учебника: столь многообразный материал (линейная и квадратическая алгебра, теория интегральных уравнений, линейные дифференциальные уравнения, обыкновенные и в частных производных, основы вариационного исчисления, теории разложения, функциональные ряды и теория специальных классов функций) не может, при сохранении стиля учебника, уместиться в рамках одной книги. Она приближается скорее к типу монографии, в которой дается освещение различных математических теорий с новой точки зрения. Ценность книги прежде всего методологическая — читатель на классическом материале знакомится с теми методами, которые лежат в движении современных анализов.

В книге содержатся прекрасные образцы применения алгебраических, вариационных и теоретико-групповых идей в разрешении фундаментальных проблем анализа. Эти методы связаны в математической мысли всего с именем Д. Гильберта, крупнейшего математика ХХ в., руководителя знаменитой геттингенской школы. Фактически, книга Куранта, ставшего представителем современной науки за Р. Курант, ставя этой книгой в заглавии этот книг, подчеркивает ее связь с кругом идей Гильберта.

Формат документа: pdf, djvu
Год публикации: 1933
Кол-во страниц: 538 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Краевые задачи математической физики

Книга является несколько расширенным изложением лекций, читаемых автором в течение двадцати с лишним лет студентам IV курса математико-механического и физического факультетов ЛГУ. В ней рассмотрены основные краевые задачи для линейных уравнений второго порядка: эллиптического, параболического и гиперболического типов и типа Шрёдингера, а также для некоторых классов систем таких уравнений. Коэффициенты уравнений зависят от точки области, в которой находятся решения, причем область может иметь произвольную форму. Исследования ведутся в классах обобщенных решений.

Книга рассчитана на студентов старших курсов университетов и технических вузов и на математиков разных специальностей, желающих познакомиться с одним из главных отделов теории уравнений в частных производных — решением и исследованием краевых задач (стационарных и нестационарных). Она будет полезна также вычислителям и инженерам, которые найдут в ней изложение различных приближенных методов решения краевых задач.

Формат документа: pdf, djvu
Год публикации: 1973
Кол-во страниц: 409 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Вариационный метод в краевых задачах для систем уравнений эллиптического типа

До настоящего времени продолжают оставаться актуальными проблемы существования и устойчивости для различных классов краевых задач теории уравнений математической физики. Особенно большие успехи достигнуты за последние десятилетия в линейных проблемах, где метод интегральных уравнений со знаменистой альтернативой Фредгольма дал возможность до конца изучить все основные линейные задачи для уравнений эллиптического типа; этот же метод дал возможность сильно продвинуть известную проблему Трикоми для уравнений смешанного типа.

Начиная с известных исследований А. Вилля, Т. Леви-Чивиты и А. И. Некрасова, мы имеем большой цикл работ по классическим нелинейным проблемам механики сплошных сред — задача о струйном обтекании произвольного контура и задача о волновых движениях тяжелой жидкости.

Наибольшее число работ в этом направлении известно также на интегральные уравнения (нелинейные) с применением метода разложений по малому параметру (А. И. Некрасов, Н. Е. Кочин и др.) или с применением методов функционального анализа, в частности знаменистую теорему о неподвижной точке (Ж. Лере, А. Вейнштейн, Ю. Кравченко и др.).

Формат документа: pdf, djvu
Год публикации: 1962
Кол-во страниц: 136 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Математические вопросы численного решения гиперболических систем уравнений

Рассмотрены различные математические вопросы, возникающие при численном решении гиперболических систем уравнений в частных производных. Материал представлен в тесной взаимосвязи с такими важными областями применения этих систем, как теория мелкой воды, газовая динамика, магнитная гидродинамика, динамика твердого деформируемого тела и ряд неклассических областей механики сплошной среды.

Отличительной чертой книги является то, что она фокусирует внимание на приложениях, традиционных и новых. Это делает ее полезной не только для интересующихся численными методами, но также для механиков, физиков и инженеров, которым приходится решать нелинейные системы дифференциальных уравнений все возрастающей сложности.

Для специалистов в различных областях механики, физики и прикладной математики, аспирантов и студентов старших курсов, сталкивающихся с необходимостью решения гиперболических систем уравнений.

Формат документа: pdf, djvu
Год публикации: 2001
Кол-во страниц: 581 страница
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Уравнения в частных производных математической физики

Книга «Уравнения в частных производных математической физики» предназначена в качестве учебного пособия для студентов и аспирантов университетов и технических вузов. Она является результатом переработки и дополнения двух известных книг: «Дифференциальные уравнения математической физики» (авт. Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов) и «Дифференциальные уравнения в частных производных второго порядка» (авт. М. М. Смирнов).

Предназначено для студентов университетов и вузов.

Формат документа: pdf, djvu
Год публикации: 1970
Кол-во страниц: 713 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Дифференциальные уравнения. Книга 2.

Уравнения с частными производными 1-го и 2-го порядков при одной неизвестной функции. Уравнения с частными производными 1-го и 2-го порядков при двух и больше неизвестных функциях. Понятие об интегральных уравнениях. Уравнения математической физики. Примеры и задачи №№ 205—300.

Формат документа: pdf, djvu
Год публикации: 1934
Кол-во страниц: 167 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Уравнения с частными производными

В настоящем томе, совершенно независимом от первого, излагается теория дифференциальных уравнений с частными производными с точки зрения математической физики. Более короткий третий том будет посвящен вопросам существования решений и построения решений с помощью конечно-разностных и других методов.

Формат документа: pdf
Год публикации: 1964
Кол-во страниц: 712 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Сочинения, том 1.

Предмет настоящего рассуждения составляет математическую часть различных физических теорий, как то: теории теплоты, теории упругости твердых тел и других. В задачах, встречающихся в этих теориях, предлагается найти интеграл данного уравнения с частными производными под различными условиями, зависящими от предмета, рассматриваемого в задаче. Вопрос этот решён для большей части случаев, которые встречаются в упомянутых теориях, тем не менее едва ли возможно решить его в общем виде.

Первый решивший вопрос подобного рода был Лагранж. Рассматривая задачу о колебании струны, он представил интеграл уравнения, от которого эта задача зависит, в виде ряда, расположенного по синусам и косинусам кратных дуг, и показал, каким образом определить коэффициенты этого ряда по начальному перемещению струны и начальным скоростям. В этих коэффициентах выводился из условий.

Формат документа: pdf, djvu
Год публикации: 1911
Кол-во страниц: 241 страница
Загрузил(а): Арбатова Юлия
Доступ: Всем