SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Infrared polarimetry is an emerging sensing modality that offers the potential for significantly enhanced contrast in
situations where conventional thermal imaging falls short. Polarimetric imagery leverages the different polarization
signatures that result from material differences, surface roughness quality, and geometry that are frequently different from
those features that lead to thermal signatures. Imaging of the polarization in a scene can lead to enhanced understanding,
particularly when materials in a scene are at thermal equilibrium. Polaris Sensor Technologies has measured the
polarization signatures of oil on water in a number of different scenarios and has shown significant improvement in
detection through the contrast improvement offered by polarimetry. The sensing improvement offers the promise of
automated detection of oil spills and leaks for routine monitoring and accidents with the added benefit of being able to
continue monitoring at night. In this paper, we describe the instrumentation, and the results of several measurement
exercises in both controlled and uncontrolled conditions
В работе представлен краткий обзор подходов для моделирования взаимодействия
поляризованного света с мутными рассевающими средами. В данной работе представлены несколько
реализаций программ Монте–Карло, отслеживающих состояние поляризации рассеянного света. Рассмотрено
несколько классов моделей, основанных на формализме Стокса–Мюллера и формализме Джонса.
Проанализированы их преимущества и недостатки
В работе представлено решение задачи рассеяния света на хаотически ориентированных частицах
неправильной формы для частиц размерами 100, 140, 170 и 200 мкм для длины волны 0,532 мкм для различных
показателей преломления. Решение строилось как в рамках физической оптики (для направления рассеяния строго
назад), так и геометрической оптики (для углов рассеяния в диапазоне от 0 до 180 градусов). Полученные решения
позволили построить диаграмму зависимости геометрического альбедо частицы от максимальной степени
поляризации для проверки эффекта Умова. Установлено, что при мнимой части показателя преломления меньше
0,001 эффект Умова выполняется с хорошей точностью. Однако, для случая, когда мнимая часть показателя
преломления больше 0,001 и в решении начинает доминировать зеркальная компонента рассеянного излучения,
эффект Умова нарушается
Получение, обработка, передача и хранение информации является неотъемлемой частью
созидательной деятельности современного общества. Прогресс XX века во многом обусловлен
развитием методов и средств передачи и обработки информационных сигналов с использова-
нием электромагнитных волн [1–5]. Появление полупроводниковой микроэлектроники [6, 7],
лазерной техники [8–12] и оптоволоконных линий связи [13, 14] привело к созданию гло-
бальной сети Интернет, повсеместному распространению средств коммуникации, вычисли-
тельных устройств и персональных компьютеров, цифровых средств радио-электронной и
оптико-электронной регистрации и мониторинга, а также компактных систем хранения дан-
ных. Развитие технологий матричных фото-детекторов типа ПЗС и КМОП привело к по-
явлению цифровой фотографии и цифрового видео. В результате количество генерируемой
и накапливаемой цифровой информации имеет тенденции экспоненциального роста, и по
современным оценкам [15] объём глобальной датасферы к 2025 году может достичь 175 ЗБ
(ЗеттаБайт или 1021 Байт). Параллельно с этим, подчиняясь закону Мура, возрастают требо-
вания к вычислительной способности систем обработки больших массивов данных. Уровень
современных вычислительных задач, требует применение устройств [16] с производительно-
стью 1018 вычислительных операций в секунду (OPS). В этой связи создание сверхшироко-
полосных коммуникационных систем с высокой пропускной способностью и стабильностью,
систем надёжного и компактного хранения данных, а также систем обработки с высокой
вычислительной мощностью и низким энергопотреблением является одними из важнейших
задач в современных информационных технологиях
Рассмотрены свойства различных полупроводниковых и диэлектрических материалов и частично металлов, используемых в твердотельной электронике. Показано влияние природы химических связей, химического и фазового состава, атомной структуры и структурных несовершенств на свойства этих материалов. Проанализированы различные способы управления этими свойствами, способы легирования полупроводниковых и диэлектрических фаз, процессы распада пересыщенных твердых растворов и предраспадные явления, процессы геттерирования и другие. Рассмотрены фазовые и структурные превращения и их механизмы при кристаллизации, получении монокристаллов, поликристаллических и аморфных полупроводников и диэлектриков, пленок и многослойных гомо- и гетероэпитаксиальных композиций с заданными свойствами.
Эта книга о нашем институте и его сотрудниках. Институт космических исследований был создан на заре космической эры,
в 1965 году.
Изобретение относится к способу
модифицирования структуры стекла под
действием лазерного пучка для формирования
люминесцирующих микрообластей и может быть
использовано для многократной перезаписи и
хранения информации. В силикатном стекле,
содержащем сульфид кадмия, записывают
микрообласть при локальном облучении
фемтосекундными лазерными импульсами с
длиной волны в ближнем инфракрасном
диапазоне, с энергией лазерных импульсов в
пределах 100-400 нДж, длительностью лазерных
импульсов 180-600 фс, частотой следования
лазерных импульсов в пределах 100-1000 кГц. Для
фокусировки лазерного пучка применяют
объектив с числовой апертурой 0,45-0,85. Далее
возможно стирание записанной микрообласти
путем ее сканирования фемтосекундным
лазерным пучком или перемещения стекла
относительно сфокусированного пучка по
траектории, которая задается скоростью
перемещения в диапазоне 10-30 мкм/с, диаметром
в диапазоне 30-100 мкм и частотой осцилляций
вдоль оси, перпендикулярной направлению
перемещения, в плоскости, перпендикулярной
направлению падения записывающего лазерного
пучка, равной 20 Гц. Для стирания используется
лазерный пучок с длиной волны в ближнем
инфракрасном диапазоне, с энергией лазерных
импульсов в пределах 100-400 нДж,
длительностью лазерных импульсов 180-600 фс,
частотой следования лазерных импульсов в
пределах 50-500 кГц при фокусировке лазерного
пучка объективом с числовой апертурой 0,45-0,85.
В стертой области возможна повторная запись
микрообластей при локальном облучении
фемтосекундными лазерными импульсами с
длиной волны в ближнем инфракрасном
диапазоне и параметрами лазерного пучка,
используемыми при записи исходных
микрообластей. Технический результат -
возможность создания долговечной оптической
памяти с возможностью перезаписи.
Изобретение относится к области оптического
материаловедения, к способу модифицирования
стекла в объеме под действием фемтосекундного
лазерного излучения. Способ лазерного
модифицирования стекла для записи информации
включает локальное облучение стекла состава,
мас.%: 3,85 CdS; 22,16 K2O; 19,27 ZnO; 3,86 B2O3;
50,86 SiO2 пучком фемтосекундного излучения
ближнего ИК диапазона, сфокусированным через
объектив с числовой апертурой 0,45-0.65, с
формированием микрообластей, при этом
записывают микрообласти, обладающие
одновременно люминесценцией, в том числе
частично-поляризованной, и поляризационно-
зависимым двулучепреломлением, а для записи
используют импульсы в количестве 5⋅103÷106 с
линейной поляризацией, длительностью 180-900
фс, энергией 100÷600 нДж и частотой следования
50-200 кГц. Техническим результатом является
формирование в стекле микрообластей,
обладающих одновременно люминесценцией, в
том числе частично-поляризованной, и
п о л я р и з а ц и о н н о - з а в и с и м ы м
двулучепреломлением, для повышения плотности
записи информации. 2 ил
Изобретение относится к области оптики и
может быть использовано для записи и хранения
оптической информации в виде текста,
изображений, штрих-кодов и цифровой битовой
информации. Целью изобретения является
увеличение скорости записи оптической
информации в стекле и упрощение состава стекла.
Сущность изобретения заключается в том, что
силикатное стекло, содержащее ионы и
молекулярные ионы серебра, локально облучают
фемтосекундными инфракрасными лазерными
импульсами с длиной волны 0.8-1.1 мкм. После
этого облученная зона стекла приобретает
люминесцентные свойства при возбуждении
люминесценции излучением с длиной волны 350-
410 нм. 2 ил
В настоящее время ведущие мировые производители
элементов памяти активно разрабатывают технологию памяти с изменяемым фазовым
состоянием, в основе которой лежит фазовый переход халькогенидное стекло – кристалл.
По сравнению с наиболее распространенной сегодня флэш-памятью, память с
изменяемым фазовым состоянием имеет значительно более высокую скорость записи,
выдерживает приблизительно в 10 тысяч раз больше циклов перезаписи и потенциально
может иметь более высокую плотность записи информации