SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Великие астрономические открытия Николая Коперника, Тихо Браге, Иоганна Кеплера, Галилео Галилея положили начало новой научной эре, стимулируя развитие точных наук. Астрономии выпала большая честь заложить основания естествознания: в частности, создание модели планетной системы привело к появлению математического анализа.
Из этой брошюры читатель узнает о многих фантастических достижениях астрономии, сделанных в последние десятилетия.
Текст брошюры представляет собой дополненную автором обработку записи лекции, прочитанной им для школьников 9–11 классов 11 ноября 2000 года на Малом мехмате МГУ.
Брошюра рассчитана на широкий круг читателей: школьников старших классов, студентов младших курсов, учителей…
В книге широко представлены задачи по математике, предлагавшиеся школьникам 6–7 классов на занятиях математических кружков и олимпиадах. Основное её содержание — классические арифметические задачи. Кроме них, есть геометрические задачи, требующие фантазии и изобретательности, и просто шутки.
Книга предназначена для учащихся 6–7 классов, но будет интересна и полезна как более старшим, так и более младшим школьникам, а также учителям и родителям.
Брошюра написана по материалам математического кружка для 6—7 классов, работавшего в 1999—2000 учебном году в аудитории 14–08 главного здания МГУ.
Взаимное влияние математики и её приложений проиллюстрировано на примере задачи о мыльной плёнке, затягивающей проволочный контур. Приближённое решение этой задачи можно получить оригинальным способом, который, на первый взгляд, никак не связан с её постановкой, а именно методом моделирования случайных блужданий.
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 10 декабря 1999 года для участников III Международного математического турнира старшеклассников «Кубок памяти А. Н. Колмогорова» — школьников 8—11 классов (запись Е. Н. Осьмовой, под редакцией Р. М. Кузнеца).
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей. 1-е изд. — 2000 год.
Красивые и наглядные понятия узла и косы сейчас в центре внимания современной математики и физики. В брошюре обсуждаются их простейшие геометрические и алгебраические свойства и их компьютерная обработка.
Текст брошюры представляет собой дополненную обработку записи лекции, прочитанной автором 7 октября 2000 года на Малом мехмате для школьников 9–11 классов.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей…
В брошюре различными способами доказываются известные, в том числе из школьной программы, неравенства Коши, Йенсена, Коши—Буняковского. Многие утверждения сформулированы в виде упражнений, решения которых приведены в конце брошюры. Кроме того, приведён список задач для самостоятельного решения.
Текст брошюры представляет собой запись лекции, прочитанной автором 6 октября 2001 года на Малом мехмате МГУ для школьников 9—11 классов (запись А. А. Белкина).
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников, учителей.
Изучение замкнутых поверхностей началось в XVIII веке с теоремы Эйлера: В−Р+Г=2 для всякого выпуклого многогранника. Но для невыпуклых многогранников выражение χ = =В−Р+Г может принимать совсем другие значения.
Приняв значение χ за численную характеристику поверхности, мы получаем её первый т о п о л о г и ч е с к и й и н в а р и а н т: он позволяет доказать, например, что тор н е э к в и в а л е н т е н кренделю. Но различить таким образом тор и бутылку Клейна н е у д а ё тс я: нужен другой инвариант, выражающий о р и е н т и р у ем о с т ь поверхности. В конце XIX века Пуанкаре навёл алгебраический порядок среди всех замкнутых поверхностей.
Одновременно Хивуд связал эйлерову характеристику χ с наименьшим числом цветов, необходимых для раскраски любой карты на данной поверхности. В XX веке геометры стали изучать поверхности с новой точки зрения: какие из них являются границами неких тел, и какие из них можно изобразить в пространстве без самопересечений. Пути решения этих проблем рассмотрены в брошюре.
Брошюра рассчитана на широкий круг читателей: школьников, студентов, учителей.
Сколькими способами можно разбить «ацтекский бриллиант» (ромб на клетчатой бумаге) на доминошки? Мы рассмотрим три разных решения этой задачи, в которых по ходу дела возникнут некоторые важные объекты и методы современной алгебраической комбинаторики и математической физики.
Брошюра написана по материалам лекций, прочитанных автором на летней школе «Современная математика» в Дубне в июле 2014 года. Она рассчитана на старшеклассников и студентов младших курсов.
Сколько есть способов разбить натуральное число в сумму нескольких слагаемых, если суммы, отличающиеся только порядком слага емых, считаются одинаковыми? Оказывается, что на этот, казалось бы, элементарный вопрос нет простого ответа. Зато теория, начинающаяся с это го вопроса, оказывается очень интересной, а ее результаты находят прим енение в самых разных разделах математики и математической физики.
Настоящая брошюра написана по материалам лекций, прочитан ных автором на летней школе«Современная математика»в Дубне в июле 2013 года. Она рассчитана на старшеклассников и студентов младших курсов.
Брошюра написана по материалам цикла лекций, прочитанных автором участникам Летней школы «Современная математика» в Дубне 20––26 июля 2008 г. В ней излагается классификация правильных многогранников в евклидовом пространстве произвольной размерности. Попутно читатель знакомится с такими важными алгебраическими понятиями, как группы отражений и системы корней.
Материал, изложенный в брошюре, иллюстрирует связь геометрии, теории групп и комбинаторики.
Брошюра адресована студентам младших курсов.
Первое издание книги вышло 2009 году.