SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Книга посвящена теории дифференциальных уравнений с частными производными смешанного типа. Автор вводит читателя в современное состояние математических задач, тесно связанных с задачами трансзвуковой газовой динамики.
В книге рассмотрены основные краевые задачи: задача Трикоми, обобщенная задача Трикоми для уравнения Чаплыгина, задача Франкля и видоизмененная задача Трикоми.
Эта книга является учебным пособием для студентов механико-математического и физико-математического факультетов вечерних и заочных отделений университетов. Она посвящена теории дифференциальных уравнений в частных производных второго порядка — тому разделу математики, который находит чрезвычайно широкое и многообразное применение в механике, физике и технике.
В работе дается вывод основных уравнений математической физики и классификация уравнений второго порядка; последовательно излагается теория уравнений гиперболического, параболического и эллиптического типов, а также теория потенциала.
Рассматриваются следующие методы решения задач, связанных с уравнениями в частных производных второго порядка: метод характеристик, метод Фурье и метод функции Грина. Изложенный материал позволяет дать первичное, начальное ознакомление с теорией дифференциальных уравнений в частных производных второго порядка.
В книге излагаются современные методы разностного решения задач математической физики и относящиеся сюда вопросы теории разностных схем.
Книга включает следующие разделы: однородные разностные схемы для решения одномерных уравнений параболического и гиперболического типов, разностные схемы для уравнений эллиптического типа, теория устойчивости разностных схем, экономичные методы решения многомерных задач математической физики, итерационные методы решения разностных уравнений.
В книге содержится значительное количество примеров, иллюстрирующих основные положения теории и способствующих более глубокому ее усвоению.
Книга рассчитана на студентов и аспирантов, специализирующихся в области вычислительной математики, а также на научных сотрудников и инженеров, связанных с численным решением задач математической физики.
Введённый Декартом в науку метод изучения геометрических конфигураций посредством представления их уравнениями устанавливает связь между аналитическими свойствами этих последних и геометрическими свойствами изображаемых ими фигур.
Всякий успех в аналитической теории — в теории функций двух и трех переменных, и в частности в области алгебраических функций, должен вести за собой соответствующее расширение наших знаний относительно свойств геометрических конфигураций, которые получаются приравниванием нулю подобных функций.
На самом деле, однако, такого полного соответствия в успехах аналитической теории и их геометрических приложений далеко не замечается. Прекрасные работы Кронекера и Вейерштрасса по теории обобщённых форм почти не получили сходных геометрических истолкований.
Теория инвариантов, или новая высшая алгебра, получившая на основе геометрии некоторые исследования свойств фигур, не изменяющихся при линейных преобразованиях, стала в настоящее время средством достижения новых результатов, да ещё сравнительно мало доступных. В заключение следует отметить указания Клебша в его последних работах.
Настоящее исследование мы начнем с изложения начальных понятий, которые представляют основы классической теории частных дифференциальных уравнений.
Как известно, дифференциальные уравнения с частными производными получаются при помощи исключения произвольных постоянных величин или произвольных функций из функциональных уравнений и их производных уравнений.
Пусть зависимая переменная ( z ) обозначает функцию двух независимых переменных ( x ) и ( y ), которая определяется следующим равенством: [ z = f(x, y). ]
Книга является существенно переработанным и дополненным результатами последнего десятилетия новым изданием работы того же названия, выпущенной в 1968 г. издательством «Наука».
Она посвящена математическим вопросам газовой динамики. В главе 1 излагается теория систем квазилинейных уравнений — основного математического аппарата газовой динамики. Глава 2 содержит рассмотрение основных задач одномерной газовой динамики, а глава 3 — изложение разностных методов газовой динамики.
Последняя, четвертая глава посвящена теории разрывных решений систем квазилинейных уравнений.
Книга посвящена описанию и применению методов обобщенного и функционального разделения переменных, используемых для поиска точных решений нелинейных уравнений с частными производными. Достаточно подробно рассматривается также прямой метод построения редукций (во многом родственный методам функционального разделения переменных) и его более общая версия, основанная на принципе расщепления. Кроме того, дано описание метода дифференциальных связей, который обобщает многие другие точные методы. Изложение сопровождается многочисленными примерами использования методов для поиска точных решений конкретных нелинейных уравнений математической физики.
Исследуются уравнения тепло- и массопереноса, теории волн, гидродинамики, нелинейной оптики, теории горения, химической технологии, биологии и др. Особое внимание уделено нелинейным уравнениям достаточно общего вида, которые зависят от одной или нескольких произвольных функций. Такие уравнения наиболее сложны для анализа, а их точные решения представляют больший практический интерес и могут применяться для оценки точности численных методов решения соответствующих начальнокраевых задач. Книга содержит много нового материала, который ранее в монографиях не публиковался.
Для широкого круга научных работников, преподавателей вузов, инженеров, аспирантов и студентов, специализирующихся в области прикладной и вычислительной математики, теоретической физики, механики, теории управления и химической технологии. Отдельные разделы книги и примеры могут быть использованы в курсах лекций по уравнениям математической физики, методам математической физики и уравнениям с частными производными, для чтения спецкурсов и для проведения практических занятий.
В настоящее издание внесен ряд изменений и дополнений; наиболее значительные из них относятся к §§ 9, 16, 24, 26, 29, 30, 37, 41, 43. Добавлены также новые задачи. Работу по подготовке этого издания провели О. А. Олейник и А. С. Калашников. Л. А. Чудов заново написал § 43. Я очень им благодарен.
Излагаются эффективные аналитические методы построения точных решений нелинейных уравнений математической физики и механики. Описаны методы обобщенного и функционального разделения переменных, прямой метод построения редукций (метод Кларксона — Крускала), метод поиска слабых симметрий, метод дифференциальных связей и некоторые другие методы. Показано, что точные решения одних уравнений нередко могут служить основой для построения решений более сложных родственных уравнений.
Исследуются уравнения массо- и теплопереноса, гидродинамики, теории волн, нелинейной акустики, теории горения, нелинейной оптики и др. Во всех разделах рассматриваются примеры использования методов для построения точных решений конкретных нелинейных дифференциальных уравнений с частными производными. Приведены многочисленные задачи и упражнения, позволяющие получить практические навыки применения рассматриваемых методов.
Изложение материала ведется в соответствии с принципом «от простого к сложному». Многие разделы можно читать независимо друг от друга, что облегчает работу с материалом.
Книга предназначена для широкого круга научных работников, преподавателей вузов, инженеров, аспирантов и студентов, специализирующихся в различных областях прикладной математики, механики и физики. Ее теоретический материал и упражнения могут быть использованы в курсах лекций по прикладной математике и математической физике, для чтения спецкурсов и для проведения практических занятий.
Плешаков Окружающий мир 3 класс Учебник в 2-х частях входит в образовательную систему “Школа России”. Материал учебника позволяет реализовать системно-деятельностный подход, организовать дифференцированное обучение и обеспечивает достижение личностных, предметных и метапредметных результатов освоения Основной образовательной программы начального общего образования. Система заданий обеспечивает освоение знаний, умений и навыков через практическую деятельность. Инструментарий для организации проектной и учебно-исследовательской деятельности будет способствовать формированию экологического мышления, творческих способностей, познавательного интереса, функциональной грамотности. Содержание переработанного учебника имеет ряд дополнений и изменений: добавлены новые задания на развитие коммуникации, кооперации, креативности; актуальные факты, учебные тексты дополнены и расширены. Изменения в представлении тем: Тема: “Природа в опасности” из 3 класса перенесена во 2 класс.