SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Изучение функций, определенных дифференциальным уравнением, во всей области их существования является задачей, полное разрешение которой невозможно при современном состоянии анализа. Однако, ограничившись изучением интегралов, бесконечно близких к уже известному интегралу, удалось получить чрезвычайно интересные результаты.
Именно таким путем А. Пуанкаре в своих замечательных работах, посвященных “Задаче о трех телах”, доказал существование бесконечного множества периодических решений и решений асимптотических к периодическим. Разыскание решений, бесконечно-близких к известному решению, привело его к системе линейных дифференциальных уравнений, которые он называет уравнениями в вариациях_; аналогичная система для уравнений с частными производными была ранее рассмотрена Г. Дарбу ** под названием _вспомогательной системы.
Результаты А. Пуанкаре были с тех пор использованы Пэнлеве *** и другими математиками при решении задачи чистого анализа, а именно при образовании дифференциальных уравнений с неподвижными критическими точками.
Из самого происхождения этого уравнения очевидно, что всякая функция, определяемая соотношением (1), удовлетворяет уравнению (3), каковы бы ни были значения, даваемые постоянным c. Соотношение (1) называется частным интегралом дифференциального уравнения (3). Совокупность этих частных интегралов называется общим интегралом того же уравнения.
Мнимым количеством, или комплексным количеством, называется всякое выражение вида a + bi, где a и b — какие-нибудь действительные числа, и i — особый символ, ввести который оказалось нужным, чтобы придать алгебре больше общности.
В сущности, на комплексное количество можно смотреть как на систему двух действительных количеств, взятых в определенном порядке. Хотя выражения вида a + bi и не имеют сами по себе никакого конкретного значения, тем не менее, условились применять к ним обыкновенные правила алгебраического вычисления при условии заменять повсюду выражение i² через -1.
Книга содержит элементарное изложение ряда методов, используемых в анализе для получения асимптотических формул. Изложение весьма своеобразное — каждая глава состоит из небольшого введения, объясняющего сущность данного метода, и некоторого количества удачно подобранных примеров (иногда довольно сложных), иллюстрирующих применение этого метода. В конце глав приводятся упражнения для самостоятельного решения.
Важность излагаемых в книге методов, наглядность и доступность изложения делают эту книгу очень ценной для всех начинающих знакомиться с методами получения асимптотических формул (студентов старших курсов и аспирантов университетов и технических вузов, физиков, инженеров различных специальностей). Книга представляет несомненный интерес также для тех, кто уже знаком с этой областью анализа.
Общие замечания. Выше (§ 5) мы имели общие условия сходимости ряда. На практике, для того чтобы узнать, является ли данный ряд сходящимся или расходящимся, всего чаще пользуются признаками менее общими, но зато более удобными для применения. Мы приведем из них лишь наиболее употребительные, которые оказываются достаточными для большинства приложений.
Сначала мы сделаем несколько замечаний, которые непосредственно выводятся из самого определения сходимости:
Книга Э. Гурса “Курс математического анализа” уже приобрела у русских читателей заслуженную известность и признание. По объему это руководство является одним из наиболее полных в современной мировой математической литературе; в то же время излагаемые факты выбраны не по принципу энциклопедичности; выбор проникнут одной руководящей мыслью — дать необходимый материал, на котором основывается разработка наиболее важных проблем современной науки.
Книга уже принесла большую пользу нашей университеской учащейся молодежи как пособие для углубления обычного курса анализа и для самообразования; можно смело сказать, что она много способствовала повышению уровня нашей математической культуры.
Эта книга предназначается для аспирантов и студентов-математиков старших курсов. Я стремился сделать её доступной и полезной также и научным работникам по механике и физике. Математик найдёт в ней прежде всего теорию интегралов типа интеграла Стилтьеса как в их простейшей концепции интегралов функций одного действительного переменного, так и в современных обобщениях этой концепции.
Не считая возможным загромождать книгу изложением специальных определений интеграла, которые встречаются в современной литературе, как, например, интеграл Хеллингера в теории квадратичных форм или интеграл Риса в теории субгармонических функций, — я стремился, напротив, возможно выпуклее выяснить те основные принципы, на которых базируются такого рода определения, и выбрать только интегралы, определённые с наиболее широкой точки зрения.
Книга представляет собой большое собрание интегралов и формул (около 12000), относящихся к элементарным и специальным функциям. В четвертом издании значительно расширены разделы, посвященные неопределенным и определенным интегралам от элементарных функций и определенным интегралам от специальных функций. Включены интегралы от специальных функций, отсутствовавшие в предыдущих изданиях. В связи с этим главы, относящиеся к специальным функциям, дополнены необходимыми разделами.
Глава об интегральных преобразованиях, имевшаяся в третьем издании, исключена. Ее материал размещен в других частях книги и книги, предназначена для научно-исследовательских институтов, лабораторий, конструкторских бюро и научных работников в области математики, физики, техники.
Этот выпуск посвящен дальнейшему углублению и развитию теории обобщенных функций, в частности перенесению техники действий с обобщенными функциями, развитой в первом выпуске, на широкие классы пространств. Базой для этого является изложенная в гл. I теория счетно-нормированных пространств.
Пространства, которые строятся и изучаются в следующих главах, используются в третьем выпуске, посвященном некоторым приложениям теории обобщенных функций к дифференциальным уравнениям. Настоящий выпуск рассчитан в первую очередь на математиков, хотя могут читать его и те только математики. Для его чтения желательны знакомство с начальными главами изложенного анализа. Этот выпуск в основном можно читать независимо от первого.
Настоящий выпуск посвящен приложениям теории обобщенных функций к двум классическим задачам анализа: к задаче о разложении по собственным функциям дифференциальных операторов и к задаче Коши для уравнений в частных производных.
Выпуск рассчитан в основном на математиков, хотя его могут читать и специалисты в смежных науках. Для его чтения необходимо знакомство с определениями и результатами второго выпуска.