SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Несмотря на то, что в приказе Министерства здравоохранения Российской Федерации «Об утверждении порядка оказания медицинской помощи взрослому населению при заболеваниях глаза, его придаточного аппарата и орбиты» сказано про оснащение медицинского консультативно-диагностического отделения поликлиники оптическим когерентным томографом, динамическое наблюдение пациентов с патологией сетчатки после начала лечения осуществляется чаще всего в медицинском офтальмологическом центре, что снижает доступность лечения для пациентов со впервые выявленной (первичной) патологией, требующей как можно более раннего начала лечения. Имеющаяся технология нуждается в изменении и интенсификации, в том числе — с применением технологий искусственного интеллекта.
Цель — разработка методических основ организационной технологии диспансерного наблюдения пациентов с патологией заднего отрезка глаза с использованием систем поддержки принятия врачебных решений на основе искусственного интеллекта.
Материалы и методы. Оценка существующей нормативной базы проведена на основе анализа Конституции Российской Федерации, федеральных законов, подзаконной нормативной базы и судебной практики. Создание структурированного медицинского документа описания снимка оптической когерентной томографии проведено с использованием экспертного метода: анкетирования 100 врачей-офтальмологов, имеющих соответствующий уровень образования, в том числе дополнительное профессиональное, занимающихся оказанием медицинских услуг — специализированной медицинской помощи пациентам с патологией заднего отрезка глаза. Структурированный медицинский документ послужил основой для формирования предикторов искусственных нейронных сетей. Обучение нейронных сетей произведено с использованием 60 000 медицинских изображений с помощью метода классификации и сегментации в зависимости от признака.
Результаты. Экспертным методом отобрано и описано 123 бинарных признака, позволяющих описать структуру макулярной области сетчатки в норме и при патологии, из которых выявлено 26 признаков, которые могут быть интерпретированы в качестве предикторов ухудшения клинического течения заболевания.
Заключение. Разработанный классификатор позволил создать и обучить на основе 60 000 медицинских изображений систему поддержки принятия врачебных решений, которая в качестве информационного сервиса, без постановки диагноза, может позволить изменить организацию процесса динамического наблюдения. Формирование маршрутизации пациентов — первичная услуга разработанной системы поддержки принятия врачебных решений. При наличии признаков ухудшения клинической картины предполагается маршрутизация в медицинский офтальмологический центр для оценки динамики и оказания специализированной, в том числе высокотехнологичной, медицинской помощи.
Тщательный анализ как оптических, так и анатомических свойств роговицы у пациентов после перенесённой передней радиальной кератотомии приобретает особое значение в выборе оптической силы интраокулярной линзы при хирургическом лечении катаракты и других видах оптической коррекции. Вариабельность клинической картины посткератотомической деформации определяет необходимость разработки её классификации и является важной задачей современной офтальмологии.
Цель — разработать автоматизированную систему классификации посткератотомической деформации роговицы с использованием машинного обучения и искусственной нейронной сети на основе анализа численных значений топографических карт роговицы.
Материалы и методы. В качестве материала использовались обезличенные результаты анализа медицинской документации 250 пациентов в возрасте от 46 до 76 лет (средний возраст — 59,63±5,95 года). Проведён анализ 500 карт рельеф-топографии передней и задней поверхностей роговицы и 3 этапа машинного обучения классификации посткератотомической деформации.
Результаты. I этап — анализ рельеф-топографии передней и задней поверхностей роговицы — позволил зафиксировать численные значения элевации передней и задней поверхности роговицы в трёх кольцевидных зонах. На II этапе в ходе глубокого машинного обучения была выбрана и создана нейросеть прямого распространения. Установлены 8 вспомогательных параметров, описывающих форму передней и задней поверхностей роговицы. III этап сопровождался получением алгоритмов классификации посткератотомической деформации роговицы в зависимости от соотношения тестовой и обучающей выборок, которое варьировало от 75 до 91%.
Заключение. Разработана искусственная нейронная сеть, успешно решающая задачу классификации типов посткератотомической деформации роговицы с точностью 91%. Установлен потенциал для дальнейшего улучшения качества обучения данной нейронной сети. Применение алгоритмов искусственной нейронной сети может стать полезным инструментом автоматической классификации посткератотомической деформации роговицы у пациентов, перенёсших ранее радиальную кератотомию.
Поддержка малого и среднего предпринимательства является актуальной темой в наше время. Образовательные программы как фактор поддержки не распространен на территории г. Иркутска. В данной статье предложена идея реализации проекта «Развитие образовательных программ для предпринимателей» в рамках принятой стратегии социально-экономического развития г. Иркутска до 2036 г.
Имплантация современных интраокулярных линз позволяет офтальмологам эффективно решать задачи хирургической реабилитации пациентов с катарактой. Степень улучшения зрительных функций пациента напрямую связана с точностью предоперационного расчёта оптической силы интраокулярных линз. Для расчёта этого показателя используются такие формулы, как SRK II, SRK/T, Hoffer-Q, Holladay II, Haigis, Barrett. Все они хорошо работают для «среднего пациента», однако не являются в достаточной степени адекватными на границах диапазонов входных переменных.
Цель — изучение возможности использования математических моделей, полученных в результате глубокого обучения искусственных нейронных сетей, для генерализации данных и прогнозирования оптической силы современных интраокулярных линз.
Материалы и методы. Обучение моделей, основанных на искусственных нейронных сетях, проводилось на масштабных выборках, в том числе на обезличенных данных пациентов офтальмологической клиники. Данные, предоставленные в 2021 году врачом-офтальмологом К.К. Сырых, отражают результаты как предоперационных, так и послеоперационных наблюдений за пациентами. Исходный файл, использованный для построения модели, основанной на искусственной нейронной сети, включал 455 записей (26 столбцов входных факторов и один столбец выходного фактора) при расчёте интраокулярных линз (дтпр). Для удобного построения моделей использовали программу-симулятор, ранее разработанную авторами.
Результаты. Полученные модели, в отличие от традиционно используемых формул, в гораздо большей степени отражают региональную специфику пациентов. Они также позволяют переобучать и оптимизировать структуру модели на основе вновь поступающих данных, что позволяет учитывать нестационарность объекта. Отличительной особенностью таких моделей, основанных на искусственных нейронных сетях, по сравнению с известными формулами, широко используемыми в хирургическом лечении катаракты, является возможность учёта значительного числа регистрируемых входных величин. Это позволило снизить среднюю относительную погрешность расчётов оптической силы интраокулярных линз с 10–12% до 3,5%.
Заключение. Данное исследование показывает принципиальную возможность генерализации значительного количества эмпирических данных по расчёту оптической силы интраокулярных линз с использованием глубокого обучения моделей искусственных нейронных сетей , которые имеют значительно большее количество входных переменных, чем при использовании традиционных формул и методов. Полученные результаты позволяют построить интеллектуальную экспертную систему с динамическим поступлением новых данных и поэтапным переобучением моделей.
В статье приводится понятие цифровизации, рассматриваются основные тренды в области цифровизации организационных процессов высших учебных заведений, выделены классы информационных систем и программного обеспечения, предназначенных для автоматизации отдельных функций управления вузом. Сделан вывод о необходимости автоматизации документооборота вуза и внедрения единой цифровой инфраструктуры на базе систем электронного документооборота (далее - СЭД). Определено понятие СЭД и актуальность ее внедрения в высшем учебном заведении, приводится классификация современных систем электронного документооборота, а также приведены примеры СЭД, разработанные с учетом особенностей документооборота высшего учебного заведения.
В последние годы актуально изменение методик и программ преподавания многих дисциплин, в том числе ультразвуковой диагностики, с включением в них различных виртуальных и симуляционных устройств. Практический опыт использования подобных технологий в процессе обучения достаточно непродолжителен, в связи с этим в отечественной и зарубежной литературе имеются лишь немногочисленные оригинальные работы, посвящённые этой теме.
Цель — определить возможности и алгоритм использования виртуального симулятора ультразвукового исследования в процессе преподавания дисциплины «ультразвуковая диагностика» на основании результатов работы с ним. Оценить преимущества и недостатки применения симулятора в сравнении с традиционной методикой преподавания.
Материалы и методы. Проанализированы результаты применения виртуального тренажёра «Vimedix 3.2» в учебном процессе. На нём проводились симуляции трансабдоминального ультразвукового исследования органов брюшной полости, трансторакальной эхокардиографии, триплексного сканирования магистральных сосудов. В процессе исследования участвовали 26 ординаторов по специальности «ультразвуковая диагностика» и 37 врачей, проходивших обучение на курсах профессиональной переподготовки.
Результаты. Применение виртуального симулятора на начальном этапе в учебном процессе может устранить многие проблемы, с которыми сталкиваются ординаторы и курсанты при обучении на клинических базах. Использование симулятора в процессе тестирования представляется менее предпочтительным, по сравнению с практическим экзаменом с использованием ультразвуковых сканеров и реальных пациентов.
Заключение. Симулятор целесообразно использовать на начальном этапе для отработки методики исследования. Рекомендуется разработка и использование в обучении дополнительных учебно-методических материалов и учебной программы. Преимуществами виртуального симулятора являются комфортность работы на начальном этапе обучения, малое время его освоения, наличие обширной базы данных патологических случаев. Выявленные некритичные недостатки требуют коррекции при дальнейшем обучении в клинике.
Педагогические и научные заслуги юбиляра
В статье рассмотрена сущность нейромаркетинга как нового инструмента маркетинга для определения потребностей, построения взаимоотношений и воздействия на потребителей. Авторами проведен анализ причин появления нейромаркетинга, проанализированы преимущества и недостатки, а также раскрыты перспективы развития данного направления. Приведены примеры результативного применения нейромаркетинга глобальными компаниями на международном рынке. Доказана эффективность интеграции инструментов нейромаркетинга и классического маркетинга.
Автором исследуется проблема трансформационных изменений, которые происходят с социальным капиталом в современных условиях повсеместной цифровизации социальной коммуникации. Цель статьи - провести анализ свойств социального капитала, которые формируются в условиях цифровизации. Задачи статьи - определить, насколько обосновано выделять цифровой социальный капитал как самостоятельную научную концепцию, а также проанализировать позицию ученых по тому, как соотносятся социальный капитал в онлайн- и офлайн-средах. Для достижения поставленной цели автором применяются методы анализа и обобщения современных исследований по проблеме формирования социального капитала в цифровой среде. На основе обобщения данных источников выявляется содержание понятия «цифровой социальный капитал», описаны его основные отличительные характеристики на уровне структуры, процессов формирования и видов. Автором отмечается, что социальный капитал в онлайн-пространстве в редких случаях является автономным по отношению к социальному офлайн-капиталу, а чаще соотносится с ним как медиатизированный, дополняющий. В заключение автором обобщаются специфичные для цифрового социального капитала свойства.
Аневризмы аорты — «тихие убийцы», развиваются без симптомов и могут привести к летальному исходу. Ежегодно заболеваемость аневризмой грудной аорты составляет около 10 случаев на 100 000 человек, а частота разрывов аневризмы — около 1,6 случая. Ранняя диагностика и лечение могут спасти жизнь пациента. Использование технологий искусственного интеллекта может значительно улучшить качество диагностики и предотвратить летальный исход.
Цель — оценить эффективность применения технологий искусственного интеллекта в выявлении аневризм грудного отдела аорты на компьютерной томографии органов грудной клетки и исследовать возможности использования этих технологий в качестве системы поддержки принятия врачебных решений врача-рентгенолога при первичном описании лучевых исследований.
Материалы и методы. Были оценены результаты использования технологий искусственного интеллекта для выявления аневризмы грудной аорты на компьютерной томографии органов грудной клетки без контрастного усиления. Была сформирована выборка из 84 405 случаев обследования пациентов старше 18 лет, из которых отобрано и ретроспективно пересмотрено сосудистыми хирургами Научно-исследовательского института скорой помощи имени Н.В. Склифосовского 86 исследований с подозрением на наличие аневризмы грудного отдела аорты по данным технологий искусственного интеллекта. Эти исследования были также ретроспективно оценены двумя врачами-рентгенологами.
Была сформирована дополнительная выборка из 968 исследований, взятых в случайном порядке из общего числа, для оценки корреляции возраста пациентов и диаметра грудного отдела аорты.
Результаты. Анализ показал, что в 44 исследованиях аневризма была первично выявлена врачом-рентгенологом, в 31 случае аневризмы не были описаны, но технология искусственного интеллекта помогла выявить патологию. Ещё 6 исследований были исключены из выборки, а в 5 случаях были обнаружены ложноположительные результаты анализа.
Использование технологий искусственного интеллекта обнаруживает и выделяет патологические изменения аорты на медицинских изображениях, тем самым повышая выявляемость аневризмы грудной аорты при интерпретации результатов компьютерной томографии органов грудной клетки на 41%. При первичном описании лучевых исследований и в ретроспективных исследованиях целесообразно использовать технологии искусственного интеллекта для профилактики пропусков клинически значимых патологий — как в качестве системы поддержки принятия врачебных решений для врача-рентгенолога, так и для повышения выявляемости патологического расширения грудного отдела аорты.
По дополнительной выборке в популяции взрослого населения частота дилатации грудного отдела аорты составила 14,5%, а аневризм грудного отдела аорты —1,2%. Данные также показали возрастную зависимость диаметра грудного отдела аорты для мужчин и женщин.
Заключение. Применение технологий искусственного интеллекта в процессе первичного описания результатов компьютерной томографии органов грудной клетки может повысить выявляемость клинически значимых патологических состояний, таких как аневризма грудного отдела аорты. Расширение ретроспективного скрининга по данным компьютерной томографии органов грудной клетки с использованием технологий искусственного интеллекта может улучшить качество диагностики сопутствующих патологий и предотвратить негативные последствия для пациентов.