SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Учебное пособие содержит сведения справочного характера, примеры ре-
шения типовых заданий, вопросы для самопроверки, тренировочные и диагно-
стические работы. Оно поможет формированию общепрофессиональных ком-
петенций, а также знаний и умений, необходимых для решения типовых за-
даний.
Предназначено для организации самостоятельной работы студентов тех-
нических специальностей, изучающих раздел «Аналитическая геометрия
на плоскости» базового курса математики.
Пособие представляет результаты исследования по проблеме изучения дисци-
плины «Прикладная теория графов» бакалаврами направления подготовки «Приклад-
ная математика и информатика». В пособии рассмотрены следующие вопросы: исто-
рия возникновения теории графов, основные понятия, виды графов, матрицы смеж-
ности и инцидентности, изоморфизм, элементы графа, маршрут, цепь, цикл, путь и
контур, связность, полный граф, теорема Куратовского, формула Эйлера, деревья,
эйлеровы линия, граф и путь, алгоритм Декстра, проблема коммивояжера, алгоритм
«самой близкой вставки».
Учебное пособие содержит краткий теоретический материал, примеры
решения задач, вопросы и задания для самоконтроля, тестовый материал, а также
практические работы (по вариантам).
Анализ результатов входного, тематического и итогового тестирования регулярно проводится для контроля уровня подготовленности абитуриентов и студентов. Оценка уровня остаточных знаний по элементарной математике студентов первого курса позволяет выдвигать обоснованные предложения по совершенствованию и оптимизации школьного курса математики. Краткий статистический анализ итогов входного тестирования по математике в период 2009-2020 гг. выявляет неожиданные закономерности и предлагает новые задачи развития системы тестирования.
Целью книги является изложение теории и методов функционального анализа, кото-
рые применяются к исследованию линейных дифференциальных уравнений. Особое
внимание уделяется теории неограниченных операторов, так как обычно операторы, со-
ответствующие задачам теории дифференциальных уравнений, в том числе уравнений
математической физики, являются неограниченными.
Книга содержит краткое изложение теории, дополненной задачами с решениями и
большое число разобранных примеров. Большая часть материала посвящена построе-
нию спектров операторов в различных нормированных пространствах, исследованию
свойств замкнутости симметричности и самосопряженности. В конце книги примене-
ние изложенных в книге методов проиллюстрировано на примере изучения свойств опе-
ратора Штурма–Лиувилля, что должно помочь читателям проводить аналогичные ис-
следования для их задач.
Учебник рассчитан на студентов старших курсов, прошедших общий курс функцио-
нального анализа, магистров и аспирантов. В основу учебника положены материалы
лекций и семинарских занятий, которые авторы учебника ведут на факультете ВМК
МГУ имени М.В. Ломоносова.
Математические олимпиады способствуют развитию творческого мышления студентов, умению выбирать эффективные способы решения нестандартных задач, прививают навыки индивидуальной работы с использованием базовых знаний, умений, тем самым готовя студентов к научно-исследовательской работе. В работе изложен опыт проведения ежегодной региональной математической олимпиады среди студентов вузов Омской области (2018-2023 гг.). Рассмотрены вопросы организации и проведения олимпиады, подведения итогов олимпиады.
Настоящий выпуск представляет собой подборку авторских
нестандартных задач по теории вероятностей и математической
статистике. Содержит комплексный анализ каждой задачи с применением
различных методов решения. Предназначено для студентов бакалавриата,
обучающихся по направлениям 03.03.02 Физика, 03.03.03 Радиофизика и
27.03.05 Инноватика
Целью учебного пособия является изложение теории обобщенных функций, ее мето-
дов и применения к решению задач математической физики в различных пространствах.
В книге рассматриваются основные пространства обобщенных функций, в том числе
пространства обобщенных функций медленного роста и пространства Соболева. Боль-
шое внимание уделяется методам, связанным с применением преобразования Фурье
в этих пространствах, в том числе методам псевдодифференциальных операторов, ко-
торые применяются для исследования эллиптических задач в пространствах Соболева.
Приведены примеры применения теории обобщенных функций к решению ряда задач
математической физики в пространствах функций медленного роста и пространствах
Соболева.
Книга предназначается студентам факультета вычислительной математики и кибер-
нетики МГУ имени М.В. Ломоносова. Она может быть использована студентами и ас-
пирантами математических специальностей других университетов.
Ключевые слова: обобщенные функции (распределения), основные функции, преоб-
разование Фурье, свертка, фундаментальное решение, дифференциальный оператор,
пространства Соболева, псевдодифференциальный оператор, эллиптический оператор
В учебном пособии дается количественный анализ заражения
территории Кольского полуострова выбросами медно-никелевых
комбинатов. Используются опубликованные данные полевых наблю-
дений, геологов, географов, биологов. Даются оценки распределе-
ния загрязнителей по территории. На основе экспериментальных
данных строятся математические модели динамики биологических
популяций.
Предназначено для студентов высших учебных заведений, обучаю-
щихся по направлению «Прикладная математика и информатика».
Олимпиадная деятельность студентов является одним из видов внеаудиторной работы, которая позволяет результативно развивать логическое мышление, исследовательские навыки и компетенции, связанные с нестандартным подходом к решению поставленной задачи. Отсюда очевидно, что необходимо вовлечение студентов в олимпиадное движение во всех его формах. В статье изложен опыт проведения Открытых межвузовских студенческих олимпиад по теории вероятностей, организатором которой является кафедра высшей математики Сибирского государственного университета телекоммуникаций и информатики (СибГУТИ). Семилетний опыт показывает, что данные олимпиады способствуют популяризации предмета «Теория вероятностей», углублению знаний студентов по данной дисциплине, развитию креативного и нестандартного мышления.
Анализ последних результатов входного тестирования первокурсников показывает, что уверенный рост показателей, наблюдавшийся в 2014-2020 гг., сменился заметным спадом, причины которого могут иметь различные объяснения: отдалённое влияние дистанционного обучения во время пандемии, изменения правил приёма в вузы, существенная трансформация системы среднего образования в предшествующие годы. Рассматривается изменение структуры показателей готовности к обучению в вузе, определяются наиболее проблемные разделы элементарной математики. Выявлено снижение доли заданий по тригонометрии в общем балле за тест.