SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Книга состоит из четырех частей. В первой части в двух вводных главах излагаются без применения какого бы то ни было математического аппарата первоначальные сведения из теории пограничного слоя; остальные главы этой части посвящены математической и физической разработке теории пограничного слоя на основе уравнений Навье — Стокса.
Во второй части излагается теория ламинарного пограничного слоя, в том числе и температурного пограничного слоя. В третьей части рассматривается переход течения из ламинарной формы в турбулентную, т. е. возникновение турбулентности. Четвертая часть посвящена турбулентным пограничным слоям.
Учебное пособие разработано в соответствии с программой курса лекций, утвержденной кафедрой аэрогидродинамики НГТУ, и содержит изложение основных современных разностных методов решения задач механики сплошных сред.
В данном учебном пособии рассматриваются различные вопросы механики сплошной среды, применяя методы функционального анализа.
Книга предназначена для студентов-механиков механико-математических факультетов, студентов машиностроительных факультетов технических университетов с углубленным изучением математики, а также специалистов-механиков и математиков.
В книге систематически изложены вариационные принципы механики жидкости и газа и механики твердого деформируемого тела. Описаны прямые качественные методы вариационного исчисления (теория двойственности вариационных задач, двусторонние оценки, исследование функционалов, зависящих от малого параметра).
Рассмотрены приложения к проблеме усреднения периодически и случайно неоднородных сред, к построению теории упругих оболочек и стержней, теории дисперсных смесей.
Для специалистов в области механики сплошной среды и прикладной математики.
Пособие содержит лекции по механике сплошных сред, которые являются составной частью раздела «Механика» курса общей физики.
Для студентов физических специальностей университетов и высших учебных заведений.
Сборник объединяет работы, опубликованные автором в научных журналах в 1957–1998 гг. Предложены вариационные принципы газовой динамики без дополнительных ограничений и магнитной гидродинамики при бесконечной проводимости. Выведены полные системы законов сохранения газовой динамики и электромагнитной динамики совершенного газа.
Дано аналитическое решение задач оптимизации формы тел, обтекаемых плоскопараллельным и осесимметричным потоками газа, а также формы сверхзвуковых сопел. Построены точные решения уравнений Навье—Стокса для стационарных течений несжимаемой жидкости, воспроизводящие вихревые кольца, пары колец, образования типа “разрушения вихря”, цепочки таких образований и др.
В монографии излагаются современные подходы к конечно-разностным методам решения задач аэрогидродинамики, обсуждаются вопросы аппроксимации, устойчивости и сходимости.
Численное моделирование проводится в рамках различных математических постановок и приближений. Рассматриваются основные закономерности трёхмерных «отрывных» течений жидкости и газа. Уделено внимание приближенным методам расчета задач и физическим особенностям пространственных течений.
Для специалистов в области прикладной математики и механики сплошной среды.
В учебном пособии последовательно изложены основные теоретические результаты о течениях вязкой жидкости. Исследования конкретных течений проводятся на основе как аналитических, так и численных решений уравнений Навье — Стокса.
При изложении материала особое внимание обращено на четкость математических постановок задач и на практический смысл получаемых решений.
Методы и результаты теории гидродинамической устойчивости часто применяются в технических приложениях и научных исследованиях для объяснения и описания ряда важных явлений в потоках. Научная литература, затрагивающая эти вопросы, обширна, однако работ с изложением методов решения задач и систематическим изложением результатов имеется немного. Особенно мало отражены задачи нелинейной теории гидродинамической устойчивости.
В данной работе излагаются некоторые задачи, связанные, главным образом, с нелинейной теорией устойчивости. Работа не претендует на исчерпывающее покрытие этой области, она ограничивается вопросами, которыми занимался автор. По большей части рассмотренные задачи связаны с теми идеями, которые высказывались академиком Г. И. Петро-вым и обсуждались на семинарах кафедры и отдела аэромеханики механико-математического факультета МГУ.
Изучаются задачи математической гидродинамики со свободной поверхностью в конформных переменных. Рассмотрены вопросы аналитической разрешимости в шкале гильбертовых пространств, численные методы для получения приближённых решений.
Рассматриваются вопросы конструктивной оценки времени существования решений. Изучаются вопросы применения математической статистики к вопросам разрешимости нелинейных уравнений. Приведены многочисленные вычислительные эксперименты, демонстрирующие методы настоящей работы. Многие полученные результаты могут быть применены не только к задачам гидродинамики со свободной поверхностью, но и абстрактным задачам Коши—Ковалевской в шкалах банаховых пространств.