Настоящее издание весьма существенно отличается от предыдущего. Из книги исключен материал, относящийся к аналитической геометрии. В связи с этим пришлось сделать перегруппировку оставшегося материала. В частности, все имеющиеся в настоящем томе приложения дифференциального числения к геометрии собраны в §7 (глава II). Далее, в первый том отнесена глава, посвященная комплексным числам, основным свойствам целых многочленов и систематическому интегрированию функций. Прежде она была главой I второго тома. Не останавливаясь на мелких добавлениях и изменениях в изложении, мы укажем на существенные добавления.
Принимая во внимание, что в следующих томах приходится встречаться с довольно тонкими и сложными вопросами современного анализа, мы сочли полезным в конце §2 (глава I) после изложения теории пределов поместить изложение теории иррациональных чисел и её применений к доказательству признаков существования предела и свойств непрерывных функций. Там же мы приводим строгое определение и исследование свойств элементарных функций. В главе V, посвященной функциям нескольких переменных, мы приводим доказательство существования неявных функций.
Изложение ведется таким образом, что крупный шрифт может читаться самостоятельно. В мелкий шрифт отнесены примеры, некоторые отдельные дополнительные вопросы, а также весь теоретический материал, о котором мы упоминали выше, и последние три параграфа главы IV, также содержащие дополнительный теоретический материал более сложного характера.
Профессор Г. М. Фихтенгольц сделал мне ряд ценных указаний в отношении изложения, которыми я воспользовался при окончательной редакции этой книги. Считаю своим приятным долгом выразить ему мою глубокую благодарность.