Примеры дифференциальных уравнений. Уравнения, с которыми мы встречались до настоящего времени, служили преимущественно для отыскания численных значений тех или иных величин. Так, при разыскании максимума и минимума функции мы, решая уравнение, находили те точки, в которых скорость изменения функции обращается в нуль; в главе IV (том 1) рассматривалась задача нахождения корней многочленов и т. п.
При этом всякий раз отыскивались из уравнения отдельные числа. Однако в приложениях математики часто возникают качественно новые задачи, в которых неизвестной является сама функция, сам закон зависимости одних переменных от других. Например, изучая процесс охлаждения тела, мы должны определить, как будет изменяться с течением времени его температура; при определении движения планет или звезд нам необходимо определить зависимость их координат от времени и т. д.
Довольно часто мы можем построить уравнение для нахождения нужных нам неизвестных функций — такие уравнения называют функциональными. Природа их может быть, говоря вообще, весьма различной. Однако мы ограничимся здесь наименее сложным (с точки зрения функционального анализа) их видом — дифференциальными уравнениями, функциональными уравнениями мы уже встречались, рассматривая новое задание функций.