Здесь преставлен полный список документов загружаемых вами в библиотеку. Ищете какой-либо документ, но не помните, в какой папке он находится? Для таких случаев есть удобная фильтрация, которая поможет вам быстро найти нужный документ, независимо от того, в какую папку он был загружен.

Трактат Н. Бурбаки Начала математики имеет целью изложить всю современную математику с единой и оригинальной точки зрения.
Много выпусков этого трактата уже вышло во Франции. Они вызвали большой интерес математиков всего мира как новизной изложения, так и высоким научным уровнем.
Настоящее издание представляет собой перевод первой книги первой части этого трактата, т. е. книги, в которой закладываются наиболее фундаментальные и общие понятия, служащие основой всего дальнейшего изложения. Книга содержит следующие главы: Описание формальной математики, Теория множеств, Упорядоченные множества, кардинальные числа; целые числа; Структуры, а также сводку результатов и исторический очерк теории множеств в мировой математике.
Книга не предполагает каких-либо предварительных знаний, а требует лишь навыка в математических рассуждениях. Она рассчитана на математиков — научных работников, аспирантов и студентов старших курсов.

Книга входит в завоевавшую мировое признание энциклопедию современной математики «Элементы математики», созданную группой французских ученых, выступающих под коллективным псевдонимом Н. Бурбаки.
Все книги этой серии отличаются оригинальностью изложения и высоким научным уровнем. Значительная часть их переведена или переводится на русский язык. Настоящая книга состоит из семи глав и содержит изложение ряда важнейших вопросов коммутативной алгебры, теории примарного разложения, теории целых элементов и нормирований и многих других разделов коммутативной алгебры — одной из фундаментальных областей современной математики.
Подобно прочим книгам Бурбаки, эта монография представляет интерес для самого широкого круга математиков.

Книга входит во всемирно известную энциклопедию современной математики «Основы математики», созданную группой французских ученых, выступающих под псевдонимом Н. Бурбаки. Ряд томов этой энциклопедии уже вышел в русском переводе и получил высокую оценку читателей.
Перевод первых глав «Групп и алгебр Ли» был выпущен в издательстве «Мир» в 1972 и 1975 гг., а сейчас предлагаются очередные две главы. Книга посвящена изучению полупростых алгебр Ли. Она содержит обширный материал по теории подалгебр Картана, автоморфизмам алгебр Ли, теории представлений полупростых алгебр Ли.
Книга предназначена для широкого круга математиков различных специальностей и разного уровня подготовки — от студентов до научных работников.

Книга входит в завоевавшую мировое признание энциклопедию современной математики „Элементы математики“, созданную группой французских ученых, выступающих под коллективным псевдонимом Н. Бурбаки. Ряд томов этой энциклопедии уже вышел в русском переводе и получил заслуженно высокую оценку читателей.
Эта книга посвящена преимущественно группам, порожденным отражениями. Она содержит обширный материал по теории групп Ли, их дискретных подгрупп, алгебраических и конечных групп, алгебр Ли, теории представлений.
Книга предназначена для самого широкого круга математиков различных специальностей, от студентов до научных работников.

Если не оговорено противное, все кольца, рассматриваемые в этой главе, предполагаются коммутативными и имеющими единицу, а модули — унитарными.

Группа французских математиков, объединенная под псевдонимом «Бурбаки», поставила перед собой цель — написать под общим заглавием «Элементы математики» полный трактат по современной математике.
Многие выпуски этого трактата уже вышли во Франции, вызвав большой интерес математиков всего мира. Настоящей книгой открывается перевод части этого трактата, посвященной алгебре и состоящей из девяти глав.
Книга содержит первые три главы этой части под названиями: «Алгебраические структуры», «Линейная алгебра» и «Полилинейная алгебра». Книга рассчитана на математиков — научных работников, аспирантов и студентов старших курсов университетов и пединститутов.

Группа французских математиков, объединенных под псевдонимом «Бурбаки», поставила перед собой цель — написать под общим заглавием «Элементы математики» полный трактат по современной математике.
Многие выпуски этого трактата уже вышли во Франции, вызвав большой интерес математиков всего мира. В русском переводе вышли «Топологические векторные пространства» (ИЛ, 1959), «Очерки по истории математики» (ИЛ, 1963), два выпуска «Общей топологии» (Физматгиз, 1958, 1959), один выпуск «Алгебры» (Физматгиз, 1962). Настоящая книга является вторым выпуском «Алгебры», содержащим перевод IV–VI глав.
Книга рассчитана на математиков — научных работников, аспирантов и студентов старших курсов университетов и пединститутов.

Как показывает заглавие, книга эта должна быть рассматриваема не как систематическое руководство (kompendium), но как введение в высшую алгебру, и потому в ней была сделана попытка положить достаточно широкое основание для того, чтобы читатель оказался в состоянии с пониманием продолжить дальнейшее изучение; это представилось более полезным, чем трактовать какие-либо главы вполне исчерпывающим образом.
Вряд ли необходимо оправдывать пропуск даже столь важных частей, как теория Галуа, и систематическое изучение инвариантов; так как выбор был необходим, то для изложения был предпочтен тот материал, который оказывается особенно важным в геометрии и в анализе так же, как и в алгебре, причем было обращено особое внимание на связь алгебраической теории и геометрии.
Но при этом надлежит заметить, что прежде всего трактуются вопросы алгебраического характера, а не аналитическая геометрия, так что геометрические исследования носят по преимуществу отрывочный и несколько случайный характер

Книга румынских математиков представляет собой введение в теорию категорий, методы и язык которой применяются почти во всей современной математике.
Приводятся многочисленные примеры ситуаций из различных разделов математики, которые иллюстрируют универсальность рассматриваемых понятий.
Книга может служить учебным пособием для изучающих современную алгебру и топологию. Она доступна студентам-математикам старших курсов университетов.

Монография известного американского математика А. Бореля содержит изложение основ теории линейных алгебраических групп, занимающей одно из центральных мест в современной математике благодаря глубоким связям с различными ее разделами (например, с алгебраической геометрией и теорией чисел, функциональным анализом и топологией).
Книга будет интересна широкому кругу математиков различных специальностей. Ясное и четкое изложение, столь характерное для стиля автора, делает ее вполне доступной для студентов университетов и пединститутов.

Решение многих задач элементарной алгебры значительно облегчается, если использовать симметричность условия задачи. В этой книге рассказывается, как использовать симметрию при решении систем уравнений, иррациональных уравнений, неравенств и т. д.
Все эти задачи решаются единообразным методом, основанным на теории симметрических многочленов. Книга будет полезна школьникам, готовящимся к конкурсным экзаменам, студентам пединститутов и учителям математики.

Книга написана двумя американскими учеными, один из которых — Гаррет Биркгоф — известен широтой своих научных интересов, простирающихся от абстрактной алгебры до гидродинамики, а другой — Томас Бартн — является директором вычислительной лаборатории Гарвардского университета.
На русском языке выходила «Теория структур» Биркгофа, два издания его знаменитой «Гидродинамики», а также совместная с Э. Сарантонелло монография по теории струй. Книга восполняет существенный пробел в нашей учебной литературе. В отличие от других математических дисциплин, по которым имеются превосходные руководства, специально ориентированные на приложения, по алгебре таких книг до сих пор не было. Это связано с тем, что алгебра (за исключением теории уравнений) приобрела черты прикладной науки лишь за последние десятилетия.
В книге излагаются идеи и методы современной алгебры, которые нашли широкое применение в таких областях, как теория автоматов и вычислительных машин, передача сообщений и кодирование, анализ естественных и математических лингвистик. Она будет полезна тем, кто работает в смежных с алгеброй областях, а также математикам всех специальностей, занимающимся прикладной математикой. Особый интерес она представляет для студентов университетов и высших технических учебных заведений, связанных с прикладной математикой.

Книга содержит работы по теории конечных групп, выполненные участниками Гомельского алгебраического семинара при Институте математики АН БССР.
В ней отражены направления, в которых ведет свои исследования советская школа теории конечных групп: существование и вложение подгрупп, факторизация конечных групп, характеристика некоторых классов групп в зависимости от наличия у них подгрупп с определенными свойствами (недостижимость, существование комплектов и др.), существование инвариантных дополнений.
Предназначена для научных работников, аспирантов и студентов физико-математических факультетов университетов и педагогических институтов, интересующихся современной алгеброй.

В различных разделах математики, например, в теории проективных плоскостей, неассоциативных тел, в ряде вопросов комбинаторного анализа и теории функциональных уравнений и т. п., возникает необходимость изучения одного естественного обобщения понятия группы, а именно квазигруппы.
Толчком к развитию теории квазигрупп послужили работы Р. Муфанга (1935 г.) по незарубам проективным плоскостям, в которых выяснялась связь таких плоскостей с квазигруппами, точнее, лупами (т. е. квазигруппами с единицей), носящими теперь ее имя. За последние десятилетия теория квазигрупп и луп получила значительное развитие в работах различных математиков, причем в основном внимание акцентировалось на лупах. Р. Брак, ведущий специалист в этой области, посвятил исследованиям теории луп свой монографический «Обзор бинарных систем» (R. H. Bruck. A survey of binary systems. Springer Verlag, 1958).

Данное учебное пособие является частью курса лекций, которые автор на протяжении ряда лет читает на экономическом факультете Славянского университета РМ. Оно адресовано учащимся лицеев, колледжей и студентам нематематических факультетов университетов, изучающих линейную алгебру.
Подробное изложение рассматриваемого в пособии материала, детальное доказательство всех без исключения теорем, следствий и замечаний сопровождается большим количеством примеров, приводимых с решениями. Все это делает пособие доступным для понимания неподготовленным читателем. Для его чтения достаточно знания лишь элементарной математики.

Данное пособие предназначено для учащихся лицеев, колледжей и студентов нематематических факультетов университетов, изучающих линейную алгебру.
Подробное изложение рассматриваемого в пособии материала, детальное доказательство всех без исключения теорем, следствий и замечаний сопровождается большим количеством примеров, приводимых с решениями. Все это делает пособие доступным для понимания неподготовленным читателем. Для его чтения достаточно знания лишь элементарной математики.

Книга посвящена изложению теории матриц и ее приложениям к теории дифференциальных уравнений, математической экономике, теории вероятностей. Монография написана так, что ее может читать студент, не изучавший ранее линейную алгебру. В книге имеется более 600 задач; многие из них подводят читателя к самостоятельной научной деятельности в области теории матриц. Ценность книги увеличивают приводимые в конце каждой главы обзоры последних оригинальных работ в соответствующей области.
Книга рассчитана на студентов университетов и вузов, на инженеров, физиков, механиков, использующих матричный аппарат. Много привлекательного найдет в ней и математик, интересующийся собственно теорией матриц.

М. Атья — известный тополог и алгебраист, лауреат Филдсовской премии, знаком советскому читателю по русскому переводу его монографии «Лекции по K-теории» («Мир», 1967). «Введение в коммутативную алгебру», написанное им совместно с И. Макдональдом, также основано на курсе лекций.
Эта книга отличается исключительно удачным подбором материала, изложенного современно, лаконично и с предельной ясностью. Разобрав все доказательства и потренировавшись на многочисленных упражнениях, читатель овладеет основами коммутативной алгебры, равно необходимыми специалистам по топологии, теории чисел, функциональному анализу, алгебраической геометрии, теории функций комплексного переменного и многим другим.
Книга, несомненно, представляет интерес для математиков различных специальностей, от студентов до научных работников.

Напомним некоторые необходимые определения.
Определение 1.1. Множество G с бинарной операцией умножения xy называется группой, если
- умножение ассоциативно, т.е. (xy)z = x(yz) для всех x, y, z ∈ G;
- существует такой элемент 1 ∈ G, называемый единицей G, что x1 = 1x = x для всех x ∈ G;
- для любого элемента x ∈ G найдётся такой элемент x⁻¹, называемый обратным к x, что xx⁻¹ = x⁻¹x = 1.

В учебном пособии излагаются все вопросы раздела «Линейная алгебра», предусмотренные программой курса «Высшая математика» для инженерно-технических специальностей вузов.
Содержится большое количество задач для самостоятельного решения. Пособие предназначено для студентов инженерно-технических специальностей вузов.

Из этой книги читатель узнает, как решать алгебраические уравнения 3-й и 4-й степени с одним неизвестным и почему для решения уравнений более высокой степени не существует общих формул (в радикалах).
При этом он познакомится с двумя очень важными разделами современной математики — теорией групп и теорией функций комплексного переменного. Одна из основных целей данной книги — дать возможность читателю попробовать свои силы в математике. Для этого почти весь излагаемый материал представляет в виде определений, примеров и большого числа задач, снабженных указаниями и решениями.
Книга рассчитана на широкий круг читателей, интересующихся серьезной математикой (начиная со школьников старших классов), и не предъявляет от читателя каких-либо специальных предварительных знаний. Книга может служить также пособием для работы математического кружка.

Книга Уокера является введением в алгебраическую геометрию в той её части, которая связана с кривыми линиями. Две первые главы содержат все сведения из алгебры и проективной геометрии, необходимые для дальнейшего чтения книги, и делают её доступной студенту второго курса университета.
В третьей главе рассматриваются вопросы, связанные с особыми точками и точками пересечения алгебраических кривых. В последнем параграфе этой главы доказывается, что любая алгебраическая кривая квадратическими преобразованиями может быть обращена в кривую, имеющую лишь кратные точки с различными касательными. Четвёртая глава посвящена степенным рядам и их приложениям.
Здесь полностью решается вопрос об определении кратности точек пересечения алгебраических кривых, доказывается в полном объёме теорема Безу о числе точек пересечения двух кривых. Заканчивается эта глава теоремой Нётер о кривой, проходящей через все точки пересечения двух данных кривых.
Пятая глава содержит изложение вопросов, связанных с рациональными и бирациональными преобразованиями. В этой же главе рассматриваются проективные кривые, определяемые дробно-рациональными функциями, теоремы о функциональной группе кривой. Завершается глава темой о круге идей, связанных с бирациональными инвариантами кривой.

Целью этого тома является изложение современных алгебраических методов, полезных при исследованиях в области бирациональной геометрии алгебраических многообразий. Подобное изложение уже опубликовано Вейлем в его книге 9. Когда будут опубликованы лекции Зарисского, прочитанные в Коллоквиуме Американского математического общества в 1947 г., станет доступным еще одно полное изложение этой области геометрии.
Оправданием появления третьей работы, посвященной тому же предмету, служит то, что этот том предназначен для другой категории читателей. Он предназначен для читателя, хорошо знакомого с классическими методами алгебраической геометрии, желающего овладеть новыми мощными методами, которые дает современная алгебра, и в то же время выяснить, что представляют собой эти методы с точки зрения привычных ему понятий. Таким образом, данное издание в первую очередь посвящено методам, а не получению оригинальных результатов и не изложению единой теории многообразий.

В этом томе излагаются основные методы теории алгебраических многообразий в n-мерном пространстве. В нем даются также приложения этих методов к некоторым из наиболее важных многообразий, используемых в проективной геометрии.
Первоначально мы предполагали изложить также арифметическую теорию многообразий и основы бирациональной геометрии, но оказалось более удобным оставить эти разделы для третьего тома. Поэтому теория алгебраических многообразий, развитая в этом томе, является в основном теорией многообразий в проективном пространстве.

Геометрия алгебраических многообразий высших размерностей является естественным развитием теории алгебраических кривых и поверхностей. Ее можно рассматривать также как геометрическую теорию систем алгебраических уравнений или как геометрический аспект теории алгебраических функций. Ввиду такой многогранности предмета изучения, алгебраическая геометрия чрезвычайно богата связями с самыми различными отраслями математики, причем связи эти возникают как в постановках вопросов, так и в используемых методах.
История алгебраической геометрии своеобразна в том отношении, что в ней накопление фактического материала намного опережало «наведение порядка» в смысле достижений надлежащей строгости. Разрыв здесь настолько значителен, что до сих пор не исчезли сомнения в правильности многих утверждений и не прекратились дебаты о том, достаточно ли или нет имеющихся доказательств. Все это, конечно, крайне затрудняет изучение алгебраической геометрии по имеющейся литературе.

Настоящая книга предназначена в качестве учебника по аналитической геометрии для студентов механико-математических, физических и физико-математических факультетов университетов и педагогических институтов. Наличие в книге задач с решениями и задач для самостоятельного решения (с ответами) позволяет использовать заочниками эту часть книги как материал семинарских занятий.
Помимо традиционного материала по аналитической геометрии в книге дано понятие о линейном пространстве и линейном многообразии. Линейное отображение определяется как коллинеация, при которой сохраняется простое отношение и положение собственных векторов. Дана метрическая теория инвариантов в аффинной системе. Рассмотрены кривые и плоские сечения поверхностей второго порядка. Проективные координаты и теоремы Дезарга, Паскаля и Брианшона даны в дополнении. В основном тексте — только однородные координаты.

Работы выдающегося французского математика Ж.-П. Серра хорошо знакомы советскому читателю по русскому переводу его книг: «Алгебраические группы и поля классов», «Когомологии Галуа» («Мир», 1968), «Алгебры Ли и группы Ли» («Мир», 1969), «Линейные представления конечных групп» («Мир», 1970), «Курс арифметики» («Мир», 1972).
Его новая книга, посвященная арифметике алгебраических (в особенности абелевых) многообразий в тех её аспектах, которые связаны с дзета-функциями, автоморфными функциями и теорией Галуа, написана с присущим этому автору мастерством. Она, несомненно, представляет интерес для математиков, и в первую очередь для специалистов по теории чисел, алгебре и топологии.

Цель этого пособия состоит в том, чтобы помочь студентам первого курса математического и физического факультетов при изучении раздела “Векторная алгебра” курсов “Аналитическая геометрия”, “Геометрия”, “Аналитическая геометрия и линейная алгебра”.
Вместе с предельно кратким изложением теоретического материала пособие содержит приемы решения типовых задач, знание которых является необходимым условием понимания курса. В стандартных учебниках этим приемам не уделяется должного внимания. Часть задач снабжена решениями, часть — ответами.

Учебник написан в соответствии с обязательным минимумом стандарта биологического образования и требований к уровню подготовки учащихся основной (базовой) школы. Он содержит все необходимые сведения о строении и жизнедеятельности организма человека, способствующие обеспечению здорового образа жизни. Большое внимание в нем уделено вопросам высшей нервной деятельности человека, гигиены и доврачебной помощи.

Римана — Роха. С одной стороны, она позволяет продемонстрировать технику вычислений с когерентными пучками, не требуя слишком детального изучения локальных свойств морфизмов или проблем представимости функторов (на что у меня не было времени). С другой стороны, она наиболее близка к классической проблематике и явно открыта для дальнейшего прогресса.
Будучи фундаментом “численных методов” в алгебраической геометрии и теории схем, K-теория доставляет необходимый аппарат для исследования структуры колец Чжоу, задач об алгебраических циклах или проблем бирациональной геометрии.
Эта теория представлена в предлагаемых записях лекций второго года. Читатель, для которого лекции 2 окажутся недоступными, сможет понять эти записи, ознакомившись с литературой, указанной в п. а) (см. в особенности 3, 4).

В 1986-1988 гг. автор прочел на механико-математическом факультете МГУ двухгодовой курс лекций по алгебраической геометрии. Материал первого года был размножен на ротапринте 2, материал второго года был опубликован в “Успехах математических наук” 5. Оба эти издания сохранили отпечаток лекционного курса, с его преимуществами и недостатками.
Предлагаемая книга отличается небольшим и стольным силу трудовой главой задуманного учебника по алгебраической геометрии. Она уже включает для обозрения материал многих лекций 2, значительно расширенных и переработанных.

Предлагаемая книжка содержит прежде всего краткий, но очень ощупчивый очерк основных понятий теории схем и техники когомологий когерентных пучков на них. Далее, эта техника применяется к теории кривых и поверхностей, для которых строятся схемы Пикара и доказывается ряд фундаментальных алгебро-геометрических фактов.
Книга трудна, но написана очень живо и на редкость содержательно. В немногочисленной монографической литературе по современной алгебраической геометрии она занимает особое место: по ней можно изучать содержательные результаты, хотя предварительные требования к читателю достаточно высоки.

Вопросы векторной алгебры составляют обязательный раздел курса аналитической геометрии, читаемого студентам физико-математических факультетов пединститутов. Важность этого раздела определяется тем, что многие вопросы аналитической геометрии успешно описываются средствами векторной алгебры, а также и тем, что на базе векторной алгебры строится векторный анализ, широко применяемый в курсах дифференциальной геометрии, общей и теоретической физики, теоретической механики.
Кроме приложений к обязательным курсам, векторная алгебра с успехом может быть использована при решении различных задач элементарной геометрии. Последнее обстоятельство усиливает роль векторной алгебры при подготовке учителя математики и физики средней школы.
Исходя из этого, была предпринята попытка выделить векторную алгебру из курса аналитической геометрии при составлении задачника-практикума по этому курсу. Мы надеялись, что такая методика изучения векторного анализа улучшит теоретическую и профессиональную подготовку студентов.

В теории классовых групп, которая ведет начало от классических работ Ф. Клейна и А. Пуанкаре, в последнее время достигнут значительный прогресс. Однако на русском языке нет книг, посвященных изложению современного состояния этой теории.
Перевод работы американского математика Ирвина Кра восполняет указанный пробел. Наряду с новыми достижениями в книге изложены и многие классические результаты теории римановых поверхностей. Книга хорошо написана, доступна для начинающих и требует от читателей лишь знакомства с основным курсом комплексного анализа и элементами топологии.

Этот учебник возник на основе лекций по высшей математике, которые автор читал в начале нулевых годов на радио-физическом факультете Харьковского национального университета им. В. Н. Каразина.
Автор хотел написать учебник «как лучше», и ему трудно судить, удалось ли это. Зато с уверенностью можно сказать, что получилось не «как всегда», хотя рассматриваемые темы вполне традиционные: векторные и евклидовы пространства, линейные отображения и матрицы, определители, системы линейных уравнений и аналитическая геометрия.
Есть, по крайней мере, два важных отличия этого учебника от большинства подобных курсов. Во-первых, автор стремился получить все результаты в многомерном случае, хотя всегда подробно обсуждаются двух- и трехмерные случаи. Особенно это относится к аналитической геометрии.

Настоящее пособие имеет своей целью дать изучающим его, главным образом студентам вузов и втузов, необходимые сведения по векторному исчислению для того, чтобы можно было в дальнейшем изучать векторным способом другие дисциплины, как, например, теоретическую механику, гидромеханику, теорию электричества.
Курс снабжен большим количеством задач геометрического и элементарно-механического характера, помогающих лучшему усвоению понятий и методов векторного исчисления.

В настоящее издание включена новая глава VII, посвященная пространствам Минковского и основам специальной теории относительности.
Эта глава в известной мере примыкает к главам V и VI, где излагаются проективная геометрия и теоретико-групповые вопросы, но по существу ее изложение построено независимо от остального материала книги (в ней используются лишь готовые результаты главы V для доказательства линейности преобразований Лоренца). Что касается других разделов, то они, в основном, остались без изменений, если не считать местных исправлений и улучшений (которых, однако, довольно много).
Автор выражает благодарность Нгуен Кан Тоану (Вьетнам), И. А. Вайнштейну и А. М. Заморзаеву за полезные замечания и рекомендации к четвертому изданию.

В настоящем издании произведены следующие изменения:
-
Значительно сокращена глава 6, посвященная общему уравнению линии второго порядка. Дело в том, что приведение к каноническому виду такого уравнения само по себе является вполне простой задачей; кроме того, эта задача не настолько часто встречается, чтобы имело смысл запоминать для нее готовые формулы. Поэтому здесь достаточно разъяснить сущность метода, что и сделано.
-
В конце главы 8 добавлены два небольших пункта о разложении вектора по косому базису.
-
Несколько упрощено изложение отдельных мест главы 13.
-
Исключен материал, содержащийся в §§ 77—81 предыдущего издания (приведение к каноническому виду общего уравнения поверхности второго порядка).

Геометрическая теория инвариантов — одна из наиболее популярных и интенсивно развивавшихся областей математики XIX в. Ее достижения связаны с именами таких математиков, как Якоби, Клебш, Кази Гильберт. Забытая надолго, эта теория возродилась в наше время на новом уровне в связи с бурным развитием алгебраической геометрии.
Ведущая роль здесь принадлежит известному американскому математику Д. Мамфорду. Предлагаемая вниманию читателей книга состоит из перевода лекций одного из крупнейших французских математиков Ж. Дьевдоне (оформленных по записям сотрудников Ж. Керрнона), содержащих обзор классической теории инвариантов и краткое введение в теорию Д. Мамфорда, а также перевода части книги Д. Мамфорда по геометрической теории инвариантов, с приложением полного доказательства его результатов.
Книга представляет несомненный интерес для специалистов по алгебраической геометрии, теории инвариантов и теории групп Ли, а ее первая часть доступна более широкому кругу читателей, включая студентов-математиков и физиков старших курсов.

Книга известного немецкого геометра В. Клингенберга и его учеников Д. Громола и В. Мейера посвящена основным вопросам римановой геометрии в целом. Написанная на современном уровне, книга тем не менее читается легко и может служить учебным пособием по римановой геометрии, что особенно ценно ввиду отсутствия соответствующей литературы. Вместе с добавлением В. А. Топоногова она дает обзор последних достижений и проблем этой области математики.
Большое число задач помогает глубже усвоить материал и облегчает самостоятельное изучение предмета. Книга представляет интерес для студентов старших курсов, аспирантов и научных работников математических специальностей.

Эта книга представляет собой учебник аналитической геометрии В ее традиционном понимании, написанный на основании лекций, которые я в течение многих лет читал в Московском университете и которые пополнены, как это и сказано в заглавии, необходимыми сведениями из алгебры.
Книгу эту, предназначенную для университетских студентов-первокурсников, я старался писать так, чтобы она была доступна каждому студенту — при единственном условии, что он вообще склонен к математике и желает серьезно заниматься ею.
Из вещей, не входящих в программу средних классов общеобразовательной школы, эти «Лекции» предполагают лишь знание комплексных чисел, так что книга может служить и целям самообразования; я думаю, что она доступна всем тем учащимся старших классов средней школы, которые любят математику, интересуются ею и готовы шаг за шагом ее изучать, не стремясь во что бы то ни стало начинать это изучение с постижения так называемых «последних слов науки».

Книга входит в серию “Математика. Новое в зарубежной науке” Выпуск которой начинается издательством “Мир”. Она представляет собой перевод статьи из журнала “Акта математика”, излагающей последние достижения Ф. Гриффитса и его учеников по многомерной теории распределения значений.
Геометрический подход и удачное использование современной техники потоков позволили авторам освободиться от громоздких выкладок, характерных для прежних попыток построения многомерных аналогов невзаимнолинейной теории мероморфных функций. Это привело их к красивой содержательной теории.
В книге кратко описаны применяемые методы, и ее можно читать независимо от других работ на эту тему. Она интересна математикам различных специальностей — аналитикам, геометрам, алгебраистам — и доступна студентам старших курсов математических факультетов.

О содержании и целях книги. Настоящая книга не имеет целью охватить всё учение о выпуклых многогранниках. Она посвящена в основном вопросу о том, какие данные и в какой степени могут определять выпуклый многогранник.
Для всяких данных, относящихся к многограннику, как длины рёбер, площади граней и т. п., указанный вопрос распадается на два.
Во-первых, мы спрашиваем, определяют ли эти данные многогранник однозначно с точностью до движения или иного тривиального преобразования (отражения, параллельного переноса, подобия), подобно тому как длины сторон определяют треугольник с точностью до движения, а углы — с точностью до подобия.
На такой вопрос отвечают общие теоремы о единственности выпуклого многогранника с теми или иными данными, единственности с точностью до движения или иного тривиального преобразования.

В этой книге описан математический аппарат Позволяющий оцифровывать перемещения твердых тел в трехмерном пространстве и на этой основе решать задачи формообразования и механического расчета криволинейных пространственных конструкций. Объектами описанного математического аппарата являются кватернионы и бикватернионы, но по ряду причин не нашедшие достойного применения при решении технических задач.
Это отчасти объясняется тем, что кватернионы и бикватернионы не изучаются в технических вузах и трактуются как гиперкомплексные числа, не понятные инженеру. Автор попытался в книге изложить материал языком, привычным для инженера, даже не упоминая о гиперкомплексных числах. Книга построена как расширенное справочное пособие по векторам, кватернионам и бикватернионам, с полным доказательством приведенных утверждений и выводов, а также пояснений, необходимых для понимания.
Приводятся примеры применения кватернионов и бикватернионов в кинематике твердого тела, сферической геометрии, механике гибких валов, расчете изделий из первоначально мягкого проволочного, в общем, пространственных криволинейных стержней. Книга предназначена для студентов, инженеров и научных работников, желающих по-новому подойти к формообразованию и расчету пространственных конструкций с сложной криволинейной геометрией, а также специалистов, занимающихся программированием трехмерной графики и компьютерной анимацией.

Геометрические знания составили основу всей точной науки, а самобытность геометрии Лобачевского — зарю самостоятельного развития наук в России.
Посев научный взойдет для жатвы народной.

Настоящая книга является переводом существенно переработанного Ф. Лёшем издания широко известного во всем мире справочника Е. Янке и Ф. Эмде. Она является совершенно особой энциклопедией по специальным функциям: содержит их определения и множество формул, 73 таблицы и 210 оригинальных чертежей и графиков, представляющих особую ценность.
Таблицы дают достаточную для многих прикладных вопросов точность и удобны в обращении, а чертежи ярко иллюстрируют качественную сторону поведения функций (как в действительной, так и в комплексной областях). Обилие материала и тщательность его обработки делают книгу необходимым подручным пособием для специалистов в области механики, физики, техники. Она будет очень полезна студентам вычислительных специальностей и инженерно-техническим работникам, встречающимся в своей практической деятельности с многочисленными расчетами.

В книге излагаются точные, приближенные аналитические и численные методы решения линейных и нелинейных интегральных уравнений. Помимо классических методов описаны также некоторые новые методы. Для лучшего понимания рассмотренных методов во всех разделах книги даны примеры решения конкретных уравнений.
Приведены точные и асимптотические решения интегральных уравнений, встречающихся в различных областях механики и физики. Приложения содержат таблицы неопределенных и определенных интегралов, а также таблицы интегральных преобразований Лапласа, Меллина и др.
Справочник предназначен для широкого круга научных работников, преподавателей вузов, аспирантов и студентов, специализирующихся в различных областях прикладной математики, механики, физики, теории управления и инженерных наук.

Справочник содержит более 2100 интегральных уравнений с решениями. Особое внимание уделено уравнениям общего вида, которые зависят от произвольных функций или содержат много свободных параметров. Приведено много новых точных решений линейных и нелинейных уравнений.
В целом в справочнике описано на порядок больше конкретных интегральных уравнений, чем в существующих книгах других авторов. Рассмотрен ряд интегральных уравнений, которые встречаются в различных областях механики и теоретической физики (теории упругости, теории пластичности, теории массo- и теплопереноса, аэро- и гидродинамике, теории колебаний, электродинамике и др.).
Справочник предназначен для широкого круга научных работников, преподавателей вузов, инженеров и студентов, специализирующихся в различных областях математики, механики, физики, химии и биологии.

Неопределенные интегралы — наиболее употребительные формулы высшей математики. Самые разнообразные вопросы математики и ее приложений к технике, естествознанию, экономике, статистике и т. д. приводят к вычислению того или иного интеграла.
Комплект готовых интегралов нужен инженерам, техникам, экономистам, научным и практическим работникам самых разнообразных специальностей. Он необходим и студентам вузов и техникумов.
Справочник М. Л. Смолянского содержит около 1300 интегралов, выпускается небольшим форматом и приспособлен для быстрого отыскания нужной формулы. Во втором издании изменено расположение таблиц и выправлены замеченные опечатки.

Учебник для 9 класса охватывает темы, такие как законы движения, механические волны и звук, электромагнитные поля, строение атома и ядра, а также эволюцию Вселенной. Он включает методические инструменты: вопросы для самопроверки и коллективного обсуждения, вычислительные и графические задачи, экспериментальные и проектные задания, описания лабораторных работ. Рубрика «Это любопытно» расширяет кругозор, а «Итоги главы» способствует естественнонаучной грамотности. Для заинтересованных учеников предоставлены углублённые материалы. Учебник изобилует иллюстрациями, разнообразными вопросами и фактами, обеспечивая доступное изложение материала. Соответствует ФГОС и включён в Федеральный перечень учебников.