Здесь преставлен полный список документов загружаемых вами в библиотеку. Ищете какой-либо документ, но не помните, в какой папке он находится? Для таких случаев есть удобная фильтрация, которая поможет вам быстро найти нужный документ, независимо от того, в какую папку он был загружен.

ЛАЗЕРЫ И ЛАЗЕРНОЕ ОБОРУДОВАНИЕ
термины и определения

ХАРАКТЕРИСТИКИ ОПТИЧЕСКИХ СИСТЕМ

КОМПОНЕНТЫ ВОЛОКОННО-ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ

В учебном пособии рассматриваются узловые произведения историко-литературного процесса XX века. В нем представлены как произведения, созданные в России, так и шедевры литературного творчества, изданные в эмиграции. Некоторые из них принадлежат к так называемой “возвращенной” литературе, анализ которой вошел в литературоведческий пласт сравнительно недавно. Большое внимание в пособии уделено поэзии. В этой связи особенно примечательна эпоха Серебряного века. В книге даны подробные анализы стихотворений А.А. Блока, С.А. Есенина, В.В. Маяковского, М.И. Цветаевой, А.А. Ахматовой, Б.Л. Пастернака. Поэзия второй половины XX века представлена именами В.С. Высоцкого, А.А. Вознесенского, Н.М. Рубцова, Б.А. Ахмадулиной, И.А. Бродского. В разделе “Драматургия” рассматриваются произведения М. Горького, В.В. Маяковского, А.В. Вампилова.

В публикуемом сборнике контрольных работ по математическим дисциплинам содержатся все контрольные работы (кроме методики математики), выполняемые студентами-заочниками III–V курсов, окончивших учительские институты (спецгруппы).
Сборник состоит из двух выпусков. В первом выпуске напечатаны контрольные работы, выполняемые студентами на III курсе. Второй выпуск содержит в себе контрольные работы, выполняемые студентами на IV и V курсах.
Каждая контрольная работа состоит из десяти вариантов для решения студентами и варианта 0, предположенного им и снабженного подробными решениями. Его назначение — облегчить студенту самостоятельную работу по соответствующему курсу.
Авторы настоящего сборника полагают, что студент-заочник, не имеющий возможности полноценно проработать практическую часть курса на занятиях, должен быть обеспечен помимо стабильных учебников и задачников, материалом, позволяющим в некоторой степени практически заняться под руководством преподавателя.
Предлагаемые контрольные работы, как правило, не затрагивают вопросов введения и развернутого изложения дисциплин, подлежащих изучению студентами на соответствующих семестрах.

Небольшая, но содержательная монография “Интеграл Лебега — Стилтьеса”, принадлежащая известному немецкому математику Э. Камке, представляет собой прекрасное введение как в общую (метрическую) теорию функций вещественной переменной, так и в некоторые специальные главы этой теории. Ряд вопросов изложен в книге весьма оригинально, и есть все основания считать, что ее перевод будет полезным дополнением к имеющейся у нас литературе по теории вещественных функций.
В ряде мест настоящего издания мы отклоняемся от принимаемой автором символики с тем, чтобы употребляемые обозначения согласить с принятыми в русской литературе. В частности, мы совершенно не пользуемся той стилизацией готического шрифта, которая применяется автором, а заменяем ее полужирным латинским шрифтом. Из других отклонений от оригинала отметим, что ссылки на немецкую учебную литературу мы заменили ссылками на подходящие советские руководства.
В тех местах, где изложение представляло нам недостаточно ясным, мы сопровождали его подробными разъяснениями, отметив их словами: Прим. перев. Наконец, необходимое текущее изменение авторского текста мы позволили себе произвести без соответствующих оговорок.

Это обстоятельный учебник по функциональному анализу, написанный на высоком научном уровне.
Книга отличается последовательностью и систематичностью изложения, широтой охвата предмета (в частности, наряду с вопросами, относящимися собственно к функциональному анализу, подробно излагаются его приложения к дифференциальным уравнениям в частных производных и другим областям математики), а также тем, что кроме традиционного материала в ней приводится ряд результатов новейших исследований. Автор — профессор Токийского университета К. Ёсида — известный специалист в области функционального анализа. В основу книги положен курс лекций, читавшийся им в течение ряда лет.
Для самостоятельного изучения книги требуется математическая подготовка примерно в объеме 2—3 курсов физико-математических факультетов. Ее можно рекомендовать аспирантам и студентам старших курсов физико-математических специальностей, а также всем, желающим усовершенствовать свои знания по функциональному анализу.

Пособие продолжает серию учебно-методических изданий по курсу высшей математики. Третий выпуск посвящен одному из фундаментальных понятий математики – понятию интеграла. В пособии подробно изучены всевозможные приложения интегрального исчисления, разобраны многочисленные примеры, приведены теоретические вопросы и задачи для самостоятельного решения.
Пособие предназначено для студентов всех специальностей нефтегазового образования, а также магистрантов, аспирантов, занимающихся исследованиями, связанными с применением математических методов. Издание подготовлено на кафедре высшей математики РГУ нефти и газа им. И.М. Губкина.

Множество — произвольная определяемая совокупность объектов (это определение т.н. “наивной” теории множеств, поэтому ниже будет упомянут парадокс Расселла и необходимость аксиоматического подхода).
Если объект x принадлежит множеству M, то пишут x ∈ M или M ∋ x. При этом x называется элементом или точкой множества M.
Обычно будем обозначать множества большими латинскими буквами, а их элементы — маленькими латинскими. Однако элементы множества также могут быть множествами, поэтому данное разграничение несущественно.

Второй том настоящего издания в основном содержит подробный обзор материала, который ранее можно было найти только в статьях. Так, например, здесь последовательно излагается применение обобщенных производных и обобщенных интегралов к тригонометрическим рядам, новые результаты об интерполировании линейных операторов, о сходимости и суммируемости почти всюду, дополнительные сведения о применении методов теории функций комплексного переменного, применение функций Литтлвуда — Пэли к рядам Фурье, теория интегралов Фурье.
Несколько в стороне от основного содержания тома стоят главы о тригонометрической интерполяции и обзор результатов о кратных рядах Фурье.
Книга Зигмунда удачно дополняет известную монографию Н. К. Бари «Тригонометрические ряды» и наряду с ней может быть рекомендована студентам-математикам старших курсов и аспирантам различных специальностей как энциклопедия методов и фактов теории тригонометрических рядов.
Книга может служить пособием для специальных курсов по тригонометрическим рядам и другим разделам теории функций.

Первое издание книги А. Зигмунда «Тригонометрические ряды» вышло в 1935 году и было переведено на русский язык (ГОНТИ, 1939). Книга оказала существенное влияние на развитие теории рядов и до сих пор пользуется широкой популярностью у советских математиков.
В 1959 году книга Зигмунда вышла в новой редакции. Автор включил в нее много материала, который до того времени был опубликован лишь в периодической печати. В результате книга разрослась до двух томов.
Первый том по кругу рассмотренных в нем вопросов близок к первому изданию книги, однако во многих местах сделаны существенные дополнения, а некоторые доказательства заменены более прозрачными; часть материала перенесена во второй том.
Второй том настоящего издания в основном содержит новый материал. В нем последовательно излагаются применение обобщенных производных и обобщенных интегралов к тригонометрическим рядам, новые результаты об интерполировании линейных операторов и другие актуальные вопросы.
Настоящая книга А. Зигмунда и известная монография Н. К. Бари «Тригонометрические ряды» взаимно дополняют друга друга и, вместе взятые, могут быть рекомендованы студентам-математикам старших курсов и аспирантам различных специальностей как энциклопедия методов и фактов теории тригонометрических рядов.
Книга может служить пособием для специальных курсов по тригонометрическим рядам и другим разделам теории функций.

Второй том настоящего издания в основном содержит подробный обзор материала, который ранее можно было найти только в статьях. Так, например, здесь последовательно излагается применение обобщенных производных и обобщенных интегралов к тригонометрическим рядам, новые результаты об интерполировании линейных операторов, о сходимости и суммируемости почти всюду, дополнительные сведения о применении методов теории функций комплексного переменного, применение функций Литтлвуда — Пэли к рядам Фурье, теория интегралов Фурье. Несколько в стороне от основного содержания тома стоят главы о тригонометрической интерполяции и обзор результатов о кратных рядах Фурье.
Книга Зигмунда удачно дополняет известную монографию Н. К. Бари «Тригонометрические ряды» и наряду с ней может быть рекомендована студентам-математикам старших курсов и аспирантам различных специальностей как энциклопедия методов и фактов теории тригонометрических рядов. Книга может служить пособием для специальных курсов по тригонометрическим рядам и другим разделам теории функций.

Эта книга является не систематическим учебником, а скорее, книгой для чтения. На простых примерах, взятых из физики, на различных математических задачах мы старались ввести читателя в круг идей и методов, широко распространенных сейчас в приложениях математики к физике, технике и некоторым другим областям.
Некоторые из этих идей и методов (такие, как применение дельта-функции, принципа суперпозиции, получение асимптотических выражений и т. д.) еще недостаточно освещаются в распространенных математических учебниках для нематематиков, так что здесь наша книга может служить дополнением к этим учебникам.
Нашей целью было пояснить основные идеи математических методов и общие закономерности рассматриваемых явлений. Напротив, формальные доказательства, рассмотрение исключений и усложняющих факторов по возможности опущены. Взамен этого мы в некоторых местах старались входить более подробно в физическую картину рассматриваемых процессов.

“Руководство” предназначено для студентов высших технических учебных заведений и особенно для тех, кто самостоятельно, без повседневной квалифицированной помощи преподавателя, изучает математический анализ и желает приобрести необходимые навыки в решении задач.
В начале каждого раздела помещены определения, теоремы, формулы и другие краткие сведения по теории и методические указания, необходимые для решения последующих задач; затем приводятся подробные примерные решения типичных задач с краткими пояснениями теоретических положений; в конце каждого раздела содержится достаточное количество методически подобранных задач для самостоятельного решения с ответами к ним и необходимыми разъяснениями.
Содержание этого пособия соответствует программе по математическому анализу для машиностроительных, приборостроительных, механических, энергетических и строительных специальностей. Это пособие вполне пригодно также и для студентов технологических специальностей, которые могут опустить те разделы и задачи, которые не входят в их программу по курсу математического анализа.
Задачи, отмеченные звездочкой, не входят в обязательный минимум, необходимый для усвоения курса. Они предназначены для студентов, желающих глубже изучить предмет, но не превышают требований программы. Автор просит извинить недостаточно подробное разъяснение некоторых вопросов в тексте, что будет иметь возможность устранить этот недостаток в следующем издании.

В работе изложена теория неявных функций от одной независимой переменной. Даны способы построения неявных функций в виде рядов. Находятся области сходимости этих рядов и области существования неявных функций, определяемых этими рядами.
Указывается аналитический вид неявных функций вне области сходимости рядов, представляющих неявные функции в исходной области.

Работе над любым разделом задачника-практикума должно предшествовать глубокое изучение соответствующего теоретического материала, необходимого для понимания данного раздела. Поэтому в начале каждого параграфа в задачнике-практикуме указываются те разделы, главы и параграфы, которые надо предварительно прочитать в учебнике. Для удобства студентов-заочников указания даются по трем учебникам:
1 Г. М. Фихтенгольц, Основы математического анализа, том I, Физматгиз, 1955 и том II, Физматгиз, 1956.
2 Н. А. Фролов, Курс математического анализа, часть 2, Учпедгиз, 1959.
3 И. А. Егорова, Математический анализ. Дифференциальное исчисление функций нескольких переменных (учебно-методическое пособие для студентов-заочников III и IV курсов физико-математических факультетов педагогических институтов), Учпедгиз, 1958. Студент-заочник может выбрать тот учебник, который ему доступнее и понятнее. Достаточно пользоваться только одним из указанных учебников.

Небольшая книжка Д. Джексона представляет собой изложение важной области математики, лежащей на границе нескольких математических дисциплин (теория функций, анализ и специально краевые задачи для дифференциальных уравнений). Изложение по возможности современно и строго, но в то же время элементарно. Больше внимания уделено выяснению основ данной теории и ее связей со смежными разделами математики и математической физики, чем изысканным тонкостям, возникающим при желании довести изложение до предельной общности и логической законченности.
Ряды Фурье по тригонометрическим функциям занимают всего 47 страниц. Но о них сказано все, имеющее интерес для широкого круга математиков и физиков. Далее, с большой полнотой изложены свойства и приложения других основных систем ортонормированных функций. В главе VII изложены основы общей чебышевской теории ортонормальных многочленов. Глава IV специально посвящена краевым задачам для дифференциальных уравнений, который естественно приводят к рассматриваемым в книге ортонормальным системам.

Автор этой книги — Жан Дьедонне — выдающийся французский аналитик, один из вдохновителей и активных членов известной группы Бурбаки. Формально от читателя требуется лишь знание «первых правил математической логики» и элементарной линейной алгебры. На самом же деле книга рассчитана на тех, кто уже знаком с основами математического анализа и хочет взглянуть на известные факты с новой точки зрения.
Характерной чертой книги является строгий аксиоматический подход и систематическое использование понятия векторного пространства. Автор умышленно не пользуется чертежами, однако его изложение в высшей степени геометрично.
Стремясь сделать книгу цельной и доступной для изучения в пределах одного академического года, Дьедонне очень строго отбирал материал. При этом его подход отличается от принятого у нас. Так, он не включает понятие меры и интеграла Лебега, но зато изложил общие факты теории функций, братья разностороннее и интересное задачи. В книге со вкусом подобраны разнообразные задачи.
Эту оригинальную книгу с интересом прочтут не только студенты старших курсов университетов и аспиранты (которым она непосредственно предназначена), но и лица, желающие углубить свои познания в современном математическом анализе.

Спектральный анализ — новая и весьма важная отрасль прикладной математики, посвященная выделению из наблюдаемых явлений или процессов периодических компонент, т. е. правилно меняющихся со временем составляющих. Подобные задачи очень часто встречаются в инженерном деле, различных разделах физики, механики, геофизики, электротехники и радиотехники, а также в экономике и статистике.
Цель книги — дать читателю руководство, позволяющее овладеть приемами и методами спектрального анализа для применения их в практической работе. Большая ценность книги — наличие в ней вычислительных схем для обработки спектров на ЭВМ, запрограммированных на ФОРТРАНЕ.
Вып. 1 издан в 1971 г. Вып. 2 включает спектральную теорию стационарных процессов, спектральные оценки, полученные с помощью сглаживания периодограмм, спектральный анализ двух временных рядов, методы статистической оценки характеристик линейного фильтра, обобщение изложенных методов на случай многомерных случайных процессов.
Книга будет с большим интересом встречена инженерно-техническими работниками, физиками, геофизиками, математиками-прикладниками, экономистами, статистиками — как специалистами, так и студентами старших курсов, для которых она послужит ценным учебным пособием.

Спектральный анализ — новая и очень важная отрасль прикладной математики, посвященная выделению из наблюдаемых явлений или процессов периодических компонент, т. е. правильно меняющихся со временем составляющих. Подобные процессы очень часто встречаются в инженерном деле, различных отделах физики и геофизики, а также в экономике.
Задача данной книги — дать инженеру или физику руководство, позволяющее овладеть приемами и методами спектрального анализа и применить их в своей практической работе. Для удобства читателей русское издание разделено на два выпуска. Выпуск 1 выйдет в 1971 г., выпуск 2 — в начале 1972 г.
В данный выпуск вошли общие принципы спектрального анализа, анализ Фурье, основы статистической и математической статистики, оценки корреляционных функций и спектров стационарных процессов.
Книга будет полезна инженерам-техническим работникам, физикам, геофизикам, математикам и работникам экономической статистики, экономиста, для которых она послужит ценным учебным пособием.

It is symbolic that in that same year of 1935, S.L. Sobolev, who was 26 years old that time, submitted to the editorial board of the journal “Matematicheskiy sbornik” his famous work 61 and published at the same time its brief version in “Doklady AN SSSR’’ 60. This work laid foundations of a completely new outlook on the concept of function, unexpected even for N.N. Luzin — the concept of a generalized function (in the framework of the notion of distribution introduced later). It is also symbolic that the work by Sobolev was devoted to the Cauchy problem for hyperbolic equations and, in particular, to the same vibrating string.
In recent years Luzin’s assertion that the discussion concerning the notion of function is continuing was confirmed once again, and the stimulus for the development of this fundamental concept of mathematics is, as it was before, the equations of mathematical physics (see, in particular, Addition written by Yu.V. Egorov and 10, 11, 16, 17, 18, 32, 49, 67).
This special role of the equations of mathematical physics (in other words, partial differential equations directly connected with natural phenomena) is explained by the fact that they express the mathematical essence of the fundamental laws of the natural sciences and consequently are a source and stimulus for the development of fundamental mathematical concepts and theories.

В сборнике подобраны задачи и примеры по математическому анализу применительно к максимальной программе общего курса высшей математики высших технических учебных заведений. Сборник содержит свыше 3000 задач, систематически расположенных в главах (I — X), и охватывает все разделы вузовского курса высшей математики (за исключением аналитической геометрии).
Особое внимание обращено на важнейшие разделы курса, требующие прочных навыков (нахождение пределов, техника дифференцирования, построение графиков функций, техника интегрирования, приложения определенных интегралов, ряды, решение дифференциальных уравнений).

В сборник (11-е изд. — 1995 г.) включено свыше 4000 задач и упражнений по важнейшим разделам математического анализа: введение в анализ; дифференциальное исчисление функций одной переменной; неопределенный и определенный интегралы; ряды; дифференциальное исчисление функций нескольких переменных; интегралы, зависящие от параметра; кратные и криволинейные интегралы. Почти ко всем задачам даны ответы. В приложении помещены таблицы.
Для студентов физических и механико-математических специальностей высших учебных заведений.

В сборнике подобраны задачи и примеры по математическому анализу применительно к максимальной программе общего курса высшей математики высших технических учебных заведений. Сборник содержит свыше 3000 задач, систематически расположенных в главах (I — X), и охватывает все разделы вузовского курса высшей математики (за исключением аналитической геометрии).
Особое внимание обращено на важнейшие разделы курса, требующие прочных навыков (нахождение пределов, техника дифференцирования, построение графиков функций, техника интегрирования, приложения определенных интегралов, ряды, решение дифференциальных уравнений).
Учитывая наличие в некоторых вузах дополнительных глав курса математики, в сборник включили задачи на теорию поля, методы Фурье и приближенные вычисления. Приведенное количество задач как избранных из типовых, так и особо сложных с избытком удовлетворяют потребности студентов по практическому овладению систематикой и развернутой схемой для детального изучения материала как во время курсов, так и для индивидуальной самостоятельной работы при подготовке заданий и контрольных работ.

Настоящий сборник задач составлен в соответствии с новой программой курса математического анализа для физико-математических факультетов педагогических институтов.
При составлении этого сборника авторы учитывали особенности задач педагогического вуза, связанные с подготовкой высококвалифицированных учителей математики и физики средней школы.
Значительное внимание уделено задачам, способствующим закреплению и углублению основных понятий математического анализа. Кроме того, включены задачи, имеющие прямое отношение к курсу математики средней школы. Авторы считали полезным включение трудных, а иногда и оригинальных задач, решение которых должно повысить общую математическую культуру и развить творческие способности учащихся.
По сравнению с предыдущим настоящее издание дополнено тремя новыми главами гл. XII — “Мера и интеграл Лебега”, гл. XIII — “Элементы функционального анализа” и гл. XIV — “Теория аналитических функций”.
Авторы не считают настоящий сборник свободным от недостатков и будут признательны за все замечания, направленные к его улучшению.

Теория, излагаемая в книге, охватывает широкую область современной математики, в которой стираются традиционные грани между алгеброй, геометрией и анализом (в широком смысле слова). Основным во всей книге является введенное автором понятие «потока», которое включает в себя как частные случаи топологическое понятие цепи, понятие дифференциальной формы, являющееся одним из основных в современной дифференциальной геометрии, и понятие обобщенной функции, приобретающее все большее значение в функциональном анализе.
Книга рассчитана на широкий круг читателей-математиков студентов старших курсов, аспирантов и научных работников. Она написана ясно и доступно и предполагает от читателя, помимо знаний в пределах первых трех курсов университета, только знакомство с простейшими понятиями топологии и тензорного исчисления.

На протяжении нашего курса мы уже несколько раз встречались с вопросом об интегральных уравнениях (т. I, § 137; т. II, § 389; т. III, § 513, 533, 547). Эта новая ветвь анализа очень быстро приобрела важное значение после работ Вольтерра (Volterra) и Фредгольма (Fredholm).
Вольтерра занимался преимущественно изучением уравнений с переменными пределами; он рассматривал уравнение этого типа как предельный случай системы алгебраических уравнений, в которых число неизвестных неограниченно возрастает. Эта же идея была использована с очень большим успехом Фредгольмом в исследовании уравнений с постоянными пределами.
В настоящей главе мы сначала покажем, как можно очень просто получить результаты Вольтерра методом последовательных приближений. В случае постоянных пределов этот метод вообще не дает полного решения, но приводит к важным свойствам резольвенты. Те трудности, которые возникают при определении аналитического характера этой резольвенты, дают возможность оценить важность окончательного шага, сделанного Фредгольмом.

Изучение функций, определенных дифференциальным уравнением, во всей области их существования является задачей, полное разрешение которой невозможно при современном состоянии анализа. Однако, ограничившись изучением интегралов, бесконечно близких к уже известному интегралу, удалось получить чрезвычайно интересные результаты.
Именно таким путем А. Пуанкаре в своих замечательных работах, посвященных “Задаче о трех телах”, доказал существование бесконечного множества периодических решений и решений асимптотических к периодическим. Разыскание решений, бесконечно-близких к известному решению, привело его к системе линейных дифференциальных уравнений, которые он называет уравнениями в вариациях_; аналогичная система для уравнений с частными производными была ранее рассмотрена Г. Дарбу ** под названием _вспомогательной системы.
Результаты А. Пуанкаре были с тех пор использованы Пэнлеве *** и другими математиками при решении задачи чистого анализа, а именно при образовании дифференциальных уравнений с неподвижными критическими точками.

Из самого происхождения этого уравнения очевидно, что всякая функция, определяемая соотношением (1), удовлетворяет уравнению (3), каковы бы ни были значения, даваемые постоянным c. Соотношение (1) называется частным интегралом дифференциального уравнения (3). Совокупность этих частных интегралов называется общим интегралом того же уравнения.

Мнимым количеством, или комплексным количеством, называется всякое выражение вида a + bi, где a и b — какие-нибудь действительные числа, и i — особый символ, ввести который оказалось нужным, чтобы придать алгебре больше общности.
В сущности, на комплексное количество можно смотреть как на систему двух действительных количеств, взятых в определенном порядке. Хотя выражения вида a + bi и не имеют сами по себе никакого конкретного значения, тем не менее, условились применять к ним обыкновенные правила алгебраического вычисления при условии заменять повсюду выражение i² через -1.

Книга содержит элементарное изложение ряда методов, используемых в анализе для получения асимптотических формул. Изложение весьма своеобразное — каждая глава состоит из небольшого введения, объясняющего сущность данного метода, и некоторого количества удачно подобранных примеров (иногда довольно сложных), иллюстрирующих применение этого метода. В конце глав приводятся упражнения для самостоятельного решения.
Важность излагаемых в книге методов, наглядность и доступность изложения делают эту книгу очень ценной для всех начинающих знакомиться с методами получения асимптотических формул (студентов старших курсов и аспирантов университетов и технических вузов, физиков, инженеров различных специальностей). Книга представляет несомненный интерес также для тех, кто уже знаком с этой областью анализа.

Общие замечания. Выше (§ 5) мы имели общие условия сходимости ряда. На практике, для того чтобы узнать, является ли данный ряд сходящимся или расходящимся, всего чаще пользуются признаками менее общими, но зато более удобными для применения. Мы приведем из них лишь наиболее употребительные, которые оказываются достаточными для большинства приложений.
Сначала мы сделаем несколько замечаний, которые непосредственно выводятся из самого определения сходимости:
- Если мы умножаем все члены ряда на постоянное число a, отличное от нуля, то новый ряд сходится или расходится одновременно с первым; если первый ряд сходится и имеет суммой S, то сумма второго ряда равна aS.

Книга Э. Гурса “Курс математического анализа” уже приобрела у русских читателей заслуженную известность и признание. По объему это руководство является одним из наиболее полных в современной мировой математической литературе; в то же время излагаемые факты выбраны не по принципу энциклопедичности; выбор проникнут одной руководящей мыслью — дать необходимый материал, на котором основывается разработка наиболее важных проблем современной науки.
Книга уже принесла большую пользу нашей университеской учащейся молодежи как пособие для углубления обычного курса анализа и для самообразования; можно смело сказать, что она много способствовала повышению уровня нашей математической культуры.

Эта книга предназначается для аспирантов и студентов-математиков старших курсов. Я стремился сделать её доступной и полезной также и научным работникам по механике и физике. Математик найдёт в ней прежде всего теорию интегралов типа интеграла Стилтьеса как в их простейшей концепции интегралов функций одного действительного переменного, так и в современных обобщениях этой концепции.
Не считая возможным загромождать книгу изложением специальных определений интеграла, которые встречаются в современной литературе, как, например, интеграл Хеллингера в теории квадратичных форм или интеграл Риса в теории субгармонических функций, — я стремился, напротив, возможно выпуклее выяснить те основные принципы, на которых базируются такого рода определения, и выбрать только интегралы, определённые с наиболее широкой точки зрения.

Книга представляет собой большое собрание интегралов и формул (около 12000), относящихся к элементарным и специальным функциям. В четвертом издании значительно расширены разделы, посвященные неопределенным и определенным интегралам от элементарных функций и определенным интегралам от специальных функций. Включены интегралы от специальных функций, отсутствовавшие в предыдущих изданиях. В связи с этим главы, относящиеся к специальным функциям, дополнены необходимыми разделами.
Глава об интегральных преобразованиях, имевшаяся в третьем издании, исключена. Ее материал размещен в других частях книги и книги, предназначена для научно-исследовательских институтов, лабораторий, конструкторских бюро и научных работников в области математики, физики, техники.

Этот выпуск посвящен дальнейшему углублению и развитию теории обобщенных функций, в частности перенесению техники действий с обобщенными функциями, развитой в первом выпуске, на широкие классы пространств. Базой для этого является изложенная в гл. I теория счетно-нормированных пространств.
Пространства, которые строятся и изучаются в следующих главах, используются в третьем выпуске, посвященном некоторым приложениям теории обобщенных функций к дифференциальным уравнениям. Настоящий выпуск рассчитан в первую очередь на математиков, хотя могут читать его и те только математики. Для его чтения желательны знакомство с начальными главами изложенного анализа. Этот выпуск в основном можно читать независимо от первого.

Настоящий выпуск посвящен приложениям теории обобщенных функций к двум классическим задачам анализа: к задаче о разложении по собственным функциям дифференциальных операторов и к задаче Коши для уравнений в частных производных.
Выпуск рассчитан в основном на математиков, хотя его могут читать и специалисты в смежных науках. Для его чтения необходимо знакомство с определениями и результатами второго выпуска.

Теория обобщенных функций — оформившаяся в последние годы область функционального анализа; она возникла в связи с потребностями математической физики и позволила правильно поставить и разрешить ряд классических проблем прикладного значения. В настоящем выпуске рассматриваются главным образом основные понятия теории обобщенных функций, действия над обобщенными функциями и т. д.
Первые две главы представляют собой элементарное введение в эту теорию. Третья глава несколько труднее для чтения и содержит более специальный материал. Выпуск рассчитан на научных работников в различных областях математики, физики и смежных наук, на аспирантов и студентов (математиков и физиков) старших курсов университетов. Он будет также интересен и полезен для инженеров.

В предлагаемой книге излагается теория коммутативных нормированных колец с ее применениями к анализу и топологии. В конце книги в виде приложения воспроизведена статья И. М. Гельфанда и М. А. Неймарка «Нормированные кольца с инволюцией и их представления», могущая служить введением в теорию некоммутативных нормированных колец с инволюцией.
Книга рассчитана на математиков (студентов старших курсов, аспирантов и научных работников), занимающихся функциональным анализом и его приложениями.

Теория представлений групп позволила по-новому понять классические результаты теории автоморфных функций, шире поставить задачи этой теории и получить ряд новых важных результатов. Важную роль играет также язык теории аделей - недавно возникшего раздела математики.
В книге имеется много новых понятий и результатов, с которыми до сих пор можно было ознакомиться лишь по журнальной литературе. Поэтому книга представляет интерес для разных кругов читателей, интересующихся современной математикой. Книга может быть рекомендована студентам старших курсов, аспирантам и научным работникам в области математики.
Знания материала предыдущих выпусков от читателя не требуется.

Этот выпуск можно рассматривать как введение в новую область функционального анализа - интегральную геометрию и связанные с ней вопросы теории представлений. В нем разобран ряд задач интегральной геометрии в аффинном пространстве, в пространстве Лобачевского и в некоторых других, родственных ему пространствах. Методы интегральной геометрии применяются затем к построению гармонического анализа на группе Лоренца и в однородных пространcтвах, где действует эта группа.
Этот выпуск, как и предыдущие, основывается лишь на материале первого выпуска и не зависит от остальных. Книга рассчитана на студентов-математиков старших курсов, аспирантов и научных работников.

Этот выпуск посвящен двум вопросам - изучению наиболее важного класса линейных топологических пространств, ядерных пространств и оснащенных гильбертовых пространств, и изучению гармонического анализа в евклидовых и бесконечномерных линейных пространствах. Рассматриваются приложения к спектральному анализу линейных операторов, к теории меры в линейных топологических пространствах, коммутационным соотношениям в квантовой теории поля, обобщенным случайным процессам и т.д.
Гармонический анализ на группе Лоренца и связанные с этим вопросы интегральной геометрии будут изложены в пятом выпуске. От читателя предполагается знакомство с первыми двумя главами вып. 1. Необходимые сведения из второго выпуска кратко изложены в этой книге. Книга рассчитана на студентов-математиков старших курсов, аспирантов и научных работников.

В книге рассматриваются многочисленные примеры из математического анализа и теории функций действительного переменного, цель которых — обратить внимание на ряд “опасных” вопросов, на которые неопытный читатель может дать неправильные ответы. Такие контрпримеры систематически подобраны авторами, и поэтому книга может служить очень хорошим дополнением к обычным учебным курсам.
Часто авторы не дают подробных доказательств, ограничиваясь лишь основными идеями построения соответствующих примеров. Это позволит читателю активно включиться в изучение материала.
Книга будет полезна студентам университетов, пединститутов и вузов, изучающим математический анализ и теорию функций.

Настоящая книжка посвящена так называемому “неопределенному интегрированию” или “нахождению функции по заданной производной”. Так как, однако, эти описательные определения чересчур расплывчаты, то, прежде чем идти дальше, нам придется более точно сформулировать сущность нашей проблемы.
Пусть f(x) — вещественная непрерывная функция действительного переменного x. Мы хотим определить функцию y, производной которой является заданная функция f(x), иными словами, решить уравнение.

Это издание отличается от предшествующих двух немногим, но существенными дополнениями и изменениями, обещанными мною в предисловии ко второму изданию. При этом мною были учтены и те замечания, которые мне были сделаны рядом товарищей и за которые я приношу им благодарность.
Однако, должен оговориться, далеко не со всеми указаниями мог я согласиться и, разумеется, только те из них, которые казались мне справедливыми, были учтены мною. Я не оставил, впрочем, без внимания и тех возражений, которые я считал несостоятельными. На некоторые из них я ответил в примечаниях к соответствующим местам текста; я старался по возможности точнее сформулировать эти возражения и противопоставить им свою точку зрения.
Хочу надеяться, что приведённые мною аргументы смогут повлиять, по крайней мере, на часть моих оппонентов. Надеюсь также, что при этом будет учтён и почти двухгодичный опыт использования этой книги в качестве учебного пособия в руках десятков тысяч учащихся.

Эта книга составляет продолжение Справочника по элементарной математике того же автора и включает весь материал, входящий в программу основного курса математики высших технических учебных заведений (механико-машиностроительных, строительных, авиационных, транспортных, электротехнических, энергетических и горнометаллургических).
Книга имеет двойное назначение.
Во-первых, она дает фактическую справку: что такое векторное произведение, как найти поверхность тела вращения, как разложить функцию в тригонометрический ряд и т. п. Соответствующие определения, теоремы, правила и формулы, сопровождаемые примерами и практическими указаниями, находятся быстро; этой цели служат детальная рубрикация и подробный алфавитный указатель.

Книга содержит изложение основ теории меры и интеграла (преимущественно — интеграла Лебега).
Второе издание отличается от первого прежде всего развернутым изложением неопределенного интеграла Лебега и теоремы Радона — Никодима, а также схемой построения меры. Кроме того, введено понятие равиостепенной абсолютной непрерывности семейства интегралов, более подробно изучены пространство измеримых функций и интеграл Радона.
Книга может быть использована как при изучении теории функций вещественной переменной в виде отдельной дисциплины, так и при прохождении теории меры и интеграла Лебега внутри общего университетского курса математического анализа.

Книга содержит элементарное изложение основ функционального анализа. В первых двух главах изучается конечно-мерное евклидово пространство, и на этом примере читатель подготавливается к введению в последующих главах общих абстрактных понятий функционального анализа. Далее рассматриваются метрические пространства и непрерывные операторы в них. Вводится основной класс пространств, изучаемых в книге, — нормированные пространства. Отдельная глава посвящена гильбертову пространству, которое вводится как частный случай нормированного пространства.
Даются обе классические реализации бесконечно-мерного сепарабельного гильбертова пространства — координатная и функциональная. Попутно указываются два подхода к построению функциональной реализации гильбертова пространства: обычная конструкция идентификации элементов пространства с квадратом, и построение пространства элементов непрерывной промежуточной нормы, задаваемых своими средними значениями.
В книге изучаются также линейные непрерывные функционалы в указанных пространствах, проводится детальное исследование спектральных задач, в частности, вполне непрерывных операторов. Конечная часть книги посвящена введению в теорию обобщённых функций и распределений. Дается краткое представление о задачах функционального анализа в приложении к современным направлениям полуупорядоченных пространств. Приводятся многочисленные примеры из алгебры, анализа, теории функций, дифференциальных и интегральных уравнений.

Данная часть задачника содержит задачи и примеры по следующим разделам математического анализа: ряды, дифференциальное и интегральное исчисление функций нескольких переменных, дифференциальные уравнения, ряды Фурье и некоторые уравнения математической физики.
Пособие предназначено для студентов пединститутов.

Предлагаемый вниманию читателей «Задачник по курсу математического анализа» предназначен в основном для студентов педагогических институтов (хотя большая часть задачника может быть использована и студентами других учебных заведений — университетов, вузов с расширенным курсом математики и т. д.).
Это определило в значительной степени подбор задач. При отборе материала авторы руководствовались действующей программой по математическому анализу для пединститутов. Лишь в нескольких местах они вышли за рамки этой программы (отдельные вопросы теории дифференциальных уравнений, тройных интегралов и т. д.). Разумеется, изучение основного материала не опирается на эти добавления.