РАСЩЕПЛЕНИЕ РАЗРЕШЕННЫХ СОСТОЯНИЙ В СЛОЖНОЙ САМООРГАНИЗУЮЩЕЙСЯ СИСТЕМЕ. ЧАСТЬ I (2019)

В сложной самоорганизующейся системе рассматриваются сценарии расщепления узлов – компонент спектра разрешенных состояний, что позволяет в приложении объяснить формирование характеристик планетных орбит в Солнечной системе. Инструментом
исследования служит предложенная ранее протоструктура – первичная, по замыслу, система отношений, с помощью которой на числовой оси моделируются ситуации в относительных характеристиках объектов различной природы. Протоструктура состоит из жесткой и мягкой компонент – числовых последовательностей, которые, в свою очередь, состоят из циклов –
повторяющихся наборов отношений. Она предназначена для поэтапного исследования эволюции (развёртывания) наблюдаемых самоорганизующаяся систем. На основе жесткой компоненты протоструктуры формируется параметр порядка системы n, который подчиняет себе две другие относительные характеристики.

Исследуется процесс согласования двух компонент протоструктуры, в результате
которого узлы в одном из её циклов расщепляются и сдвигаются. Каждый из узлов
представляется спектром, любая позиция которого интерпретируется как отдельный элемент параметра порядка n, которому подчинёна одна из позиций на нижнем уровне иерархии.

Устойчивость спектра трактуется как следствие тождественного совпадения узлов, которые
относятся к разным узловым конфигурациям и интерпретируются взаимоисключающим образом.

Процедура выбора при согласовании узловых конфигураций является поисковой, имеет
геометрический характер, учитывает предысторию и моделирует в системе процесс
естественного отбора. Анализ неустойчивостей осуществляется по специальной методике.
Проводится подробное обсуждение шагов развёртывания системы. В приложении рассматривается формирование пространственной структуры планетных орбит в плоскости эклиптики Солнечной системы. Исходно роль параметра порядка
n играет относительный момент количества движения, который в процессе эволюции
трансформируется в спектр параметра порядка n.

Издание: СЛОЖНЫЕ СИСТЕМЫ
Выпуск: № 2 (31) (2019)
Автор(ы): Смирнов Владимир
Сохранить в закладках
ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНЫХ МАСС ПЛАНЕТ НА ОСНОВЕ ХАРАКТЕРИСТИК ИХ ОРБИТ И ПЕРИОДОВ ОБРАЩЕНИЯ (2019)

Предлагается основанный на анализе отношений способ определения масс планет в Солнечной системе по отношению к массе Земли. В основу модели заложено представление о самоорганизации структур, при этом структура понимается как сеть, состоящая из узлов – разрешенных на числовой оси состояний и связей между ними – правил. Генератором разрешенных состояний является протоструктура – первичная, по замыслу, и циклически организованная совокупность отношений. Протоструктура предназначена для исследования процессов эволюции. В одном из циклов протоструктуры исследуется взаимодействие узлов на уровне параметра порядка n, позиции которого образуют спектр и задают разрешенные узлы на лежащих ниже уровнях иерархии, которых всего 6. Предлагаются связи элементов спектра с указанными подчинёнными узлами; пригодность связей демонстрируется на примере исходного состояния системы. Объектом исследования является уровень параметра порядка n в состоянии эволюционной зрелости. Для этого в приложении все характеристики абстрактной системы отношений интерпретируются в известных терминах планетной системы Солнца, которая понимается как эволюционно зрелая. Для каждой планеты одна часть относительных характеристик (расстояния, периоды обращения, ускорения) заимствуется из наблюдательных данных и переводится на n-уровень. Другая часть (массы планет и действующие на них силы) реконструируется на основе различных представлений о симметрии, характерных согласно модели для n-уровня. Роль ведущей характеристики на n-уровне играет относительный момент количества движения – в случае кругового движения площадь, описываемая движущимся телом в единицу времени при нормировке на принятую первую позицию. При усложнении взаимодействия узлов уровень параметра порядка детализируется. На n-уровне размещается среди прочих позиция вида n(m), что позволяет при известных связях определить m – массу планеты. Полученные результаты интерпретируются равным образом и с позиций абстрактной самоорганизующейся системы, и с позиций планетной системы. В среднем полученные

Издание: СЛОЖНЫЕ СИСТЕМЫ
Выпуск: № 1 (30) (2019)
Автор(ы): Смирнов Владимир
Сохранить в закладках
ЭВОЛЮЦИЯ ВЕДУЩЕГО МАСШТАБНОГО КОЭФФИЦИЕНТА В АБСТРАКТНОЙ СИСТЕМЕ ОТНОШЕНИЙ (2020)

Исследуется эволюция (развёртывание) ряда характеристик в абстрактной системе отношений в зависимости от изменения её максимального масштабного коэффициента, что позволяет в приложении представить зависимость эксцентриситета орбиты Земли от выгорания Солнца. Используется структурный подход, который в основе исключает специфику конкретных систем. Инструментом анализа является протоструктура, при этом структура понимается как совокупность отношений, а протоструктура выступает, как её предполагаемая первооснова. Она состоит из двух компонент, наделённых циклической природой, и задаёт спектр позиций параметра порядка nk, где k – порядковый номер узла - разрешенного состояния в выделенном цикле k=1 – 10. Все нормировки выполнены на k=3, что удобно для приложения. Ранее для узла k=3 получены модельные позиции Δ3 на разных этапах эволюции, где Δ3 - расщепление позиции n3 в результате её взаимодействия с другими n-позициями в системе узлов k=1-10. Для сравнения
узлов в названной системе предложены масштабные коэффициенты, из которых выделен
наибольший. Показано также, что в результате взаимодействия компонент протоструктуры
формируется граница системы nmin, от которой зависит, с одной стороны, предельная скорость υmax/υ3, а с другой, Δ3 - расщепление позиции n3. Указанная скорость понимается как инвариант и соответствует скорости света в пределах δ=1*10-5%. В настоящей работе анализируется M/m3 - наибольший масштабный коэффициент системы, который именуется ведущим, уменьшается в процессе эволюции и играет роль управляющего параметра, от которого зависят все остальные характеристики за исключением инварианта υmax/υ3. Для M/m3 предложены: a) исходное значение; b) значение, при котором появляется расщепление Δ3, а также c) связи названных выше характеристик. На указанной основе с учётом предыстории построен дискретный сценарий развёртывания системы от исходного значения M/m3 до выбранного конечного.

Издание: СЛОЖНЫЕ СИСТЕМЫ
Выпуск: № 36 (2020)
Автор(ы): Смирнов Владимир
Сохранить в закладках
ФОРМИРОВАНИЕ ПРЕДЕЛЬНОЙ СКОРОСТИ В ПРОЦЕССЕ ЭВОЛЮЦИИ АБСТРАКТНОЙ СИСТЕМЫ ОТНОШЕНИЙ (2020)

Исследуется один из аспектов эволюции (развёртывания) абстрактной системы отношений, что позволяет выявить характерную для неё предельную относительную скорость и показать, что в приложении она мало отличается от скорости света. Используется структурный подход, который в основе исключает специфику конкретных систем. Инструментами анализа являются предложенные ранее протоструктура и параметр порядка n на её основе. Структура трактуется как сеть, состоящая из узлов – разрешенных состояний и их связей – правил, ответственных за устойчивость. Структура понимается как совокупность отношений, а протоструктура выступает как её предполагаемая первооснова, наделённая циклической природой и задающая спектр позиций параметра порядка nk, где k=1 ,2, 3…10 – порядковый номер узла в цикле 1:10. Названный цикл содержит, в частности, узлы n2 и n3, при этом большая часть нормировок выполнена при использовании k=3, что удобно для приложения. Рассматриваются связи между ранее выявленной исходной границей системы отношений nmin и расщеплением Δ3 для узла n3, которое также установлено на основе модельных соображений и соответствует наблюдениям. Исходно узел n2 жестко связан с границей nmin. В настоящей работе анализируется появление и эволюция связи границы nmin с узлом n3 и уход на второй план исходной связи с n2. Рассматривается процедура поиска nmin , зависящая от выбора Δ3. Позиции nmin и n3 различаются примерно на 4 порядка и трактуются как единая система. Основой анализа являются сдвиги узлов относительно исходного положения, что позволяет игнорировать различие в порядках. Процесс эволюции развёрнут как сценарий - набор следующих друг за другом шагов – структурных событий, в результате чего реализуется высокая степень совместимости узлов системы.
В приложении исследуемая система трактуется как пара Солнце (nmin) – Земля (Δ3) в плоскости эклиптики Солнечной системы. Роль nk играет относительный момент количества движения, позиция nmin задаёт границу внутреннего Солнца, позиции n2 и n3 трактуются как характеристики Венеры и Земли

Издание: СЛОЖНЫЕ СИСТЕМЫ
Выпуск: №35 (2020)
Автор(ы): Смирнов Владимир
Сохранить в закладках