Данное исследование охватывает развитие методов математического анализа фондовых рынков с использованием подходов машинного обучения и моделей математического программирования. В рамках исследования описана модель частично-целочисленного линейного программирования для решения задач бинарной классификации с наложением дополнительных условий на число используемых признаков модели и стабильности качества модели во времени. Данная модель реализует комитетный подход к решению задач классификации. Эффективность предложенной модели представлена на примере решения задачи прогнозирования моментов для покупки или продажи акций ПАО «Сбербанк» на основе биржевых данных за период с августа 2007 по май 2023 г. Полученные результаты торговой стратегии позволяют говорить о том, что предложенная модель имеет низкий риск получения убытков на периоде в 1 год, что подтверждается отсутствием периодов с метрикой Accuracy менее 50 %, а также оценкой потенциальных доходов, которая на всех годовых периодах была выше 10 %. Проведенное исследование подчеркивает значимость интеграции математического программирования и машинного обучения для повышения точности и эффективности торговых стратегий на фондовых рынках. Данная работа может представлять интерес для профессиональных трейдеров, исследователей данных, студентов экономических и технических специальностей, а также всех лиц заинтересованных в теме инвестиций и машинного обучения.
Обоснование: болезнь Альцгеймера (БА) как наиболее распространенная форма деменции характеризуется ухудшением познавательных функций и обычно начинается с потери памяти о недавних событиях. Важен поиск биологических методов, чувствительных и доступных, которые можно было бы использовать для ранней диагностики БА и определения тяжести заболевания.
Цель исследования: разработка алгоритмов машинного обучения (МО) на основе таких воспалительных маркеров, как энзиматическая активность лейкоцитарной эластазы (ЛЭ) и функциональная активность α1-протеиназного ингибитора (α1-ПИ) для диагностики и оценки тяжести БА.
Пациенты и методы: в исследование включены 128 человек в возрасте от 55 до 94 лет (73,7 ± 7,9 года), из которых 91 пациент с диагнозом болезни Альцгеймера и 37 условно здоровых людей (контроль). В качестве классифицирующих признаков для построения моделей рассматривали показатели ЛЭ и α1-ПИ в плазме крови. Для построения модели машинного обучения применяли следующие алгоритмы: метод оптимально достоверных разбиений (Optimal Valid Partition, OVP), логистическая регрессия (LR), метод опорных векторов (SVM), случайный лес (RF), градиент бустинга (GB) и метод статистически взвешенных синдромов (МСВС). Был использован программный пакет Data Master Azforus. Прогностическую эффективность построенных классификаторов оценивали по общей точности (аccuracy), чувствительности (sensitivity), специфичности (specicity), F-мере и ROC-анализу.
Результаты: созданные алгоритмы машинного обучения позволили надежно разделить общую группу исследуемых (пациенты + условно здоровые), а также пациентов с различной тяжестью БА на 4 квадранта двумерной диаграммы в координатах ЛЭ и α1-ПИ и показали близкую и достаточно высокую прогностическую эффективность.
Заключение: разработанные алгоритмы машинного обучения оказались высокоэффективными в оценке тяжести БА на основе воспалительных маркеров (энзиматической активности ЛЭ и функциональной активности α1-ПИ) и могут быть полезными для ранней диагностики заболевания и своевременного назначения терапии.
Обоснование: в связи с разработкой в последние годы новых технологий анализа ЭЭГ появилось много новых работ в этой области, в том числе исследующих параметры ЭЭГ при шизофрении.
Цель обзора: изучить данные современных исследований о возможностях оценки записи ЭЭГ покоя для диагностики и прогнозирования течения шизофрении.
Материал и методы: отбор публикаций проводился в базах eLibrary, PubMed, Google Scholar и CNKI с использованием ключевых слов: «психоз», «шизофрения», «ЭЭГ», «состояние покоя». Методологически работа представляет собой описательный (нарративный) обзор литературы. Для анализа было отобрано 33 источника.
Обсуждение и заключение: по имеющимся к настоящему времени данным, качественная и количественная оценка ЭЭГ покоя не может использоваться для инструментальной диагностики шизофрении, так как регистрируемое при этом чаще всего увеличение доли медленноволновой активности наблюдается при различных психических расстройствах. При этом некоторые количественные спектральные оценки ЭЭГ покоя могут быть использованы для определения прогноза негативного ответа на терапию антипсихотиками, а также для объективной оценки динамики состояния. Оценки мощности медленных ритмов ЭЭГ покоя и другие методы анализа связанности различных нейронных сетей можно рассматривать как способы выявления потенциальных маркеров наличия специфического эндофенотипа. Современные цифровые технологии, включая алгоритмы машинного обучения и искусственного интеллекта, позволяют за счет использования сложных математических моделей производить дифференциацию ЭЭГ покоя больных шизофренией и здоровых лиц с точностью, чувствительностью и специфичностью более 95%. Оценка микросостояний ЭЭГ дает возможность судить о функционировании крупных нейронных ансамблей и может стать одним из способов характеристики эндофенотипа шизофрении.
Одним из важнейших этапов программы ВРТ является проведение овариальной стимуляции с целью получения оптимального числа зрелых ооцитов. Предикция ответа яичников на стимуляцию при помощи машинного обучения может быть осуществлена с использованием различных алгоритмов в зависимости от типа данных и поставленной задачи. В исследовании были проанализированы клинико- лабораторные данные пациенток в зависимости от количества зрелых ооцитов, полученных в ходе пункции, при помощи линейной регрессии и решающего дерева. Использование точных прогностических систем с большим объемом выборки, а также дополнительных математических подходов позволит повысить количество ооцитов, получаемых в ходе пункции за счет оптимизации наиболее значимых корригируемых факторов.
В статье рассматривается вопрос применения нейронных сетей для автоматизации процесса классификации типов субстратов дна, представлено описание традиционных методов классификации, приведены примеры успешного применения нейронных сетей в смежных задачах, проанализированы методы обработки изображений на разных стадиях. Составлена и описана схема процесса обработки данных с применением нейронных сетей для повышения качества классификации.
Введение: многочисленные исследования говорят о том, что современные крупные нейронные сети, как правило, имеют избыточное количество параметров. Целью работы является обучение и оптимизация модели “ruBERT” для применения в информационных вопросно-ответных системах на русском языке. Научная новизна работы состоит в экспериментальном исследовании различных методов прореживания модели “ruBERT” при дообучении на наборе данных “SberQuAD”.
Методы: в настоящей работе используются методы обработки естественного языка, машинного обучения, прореживания искусственных нейронных сетей. Языковая модель была настроена и дообучена при помощи библиотек машинного обучения “Torch” и “Hugging Face”. Для обучения нейронных сетей использовался набор данных “SberQuAD”. Все эксперименты проводились при помощи сервисов “Google Colab” и “Google Cloud”.
Результаты: было обнаружено, что удаление ~54% от числа весов кодировщика модели “ruBERT” (~39 миллионов параметров) приводит к незначительным ухудшениям в результатах работы модели: с 67,31 до 63,28 для показателя EM и с 85,47 до 82,48 для показателя F-мера. Полученные результаты говорят о том, что модель “ruBERT” содержит избыточное количество весов для задачи “извлечение ответа на вопрос”. Для эффективного применения данной модели в информационных вопросно-ответных системах на русском языке необходимо проводить её компрессию и оптимизацию. Оптимизированная модель может работать на менее мощном оборудовании без значимых потерь в производительности, что приводит к уменьшению затрат на поддержание информационных вопросно-ответных систем, в которых применяется данная модель.
В данной статье описывается процесс реализации такого метода машинного обучения, как рекомендательная система; рассматривается построение коллаборативной рекомендательной системы, в основе которой лежит алгоритм сингулярного разложения или сингулярной декомпозиции матрицы. Описаны процесс сбора тестовых данных, их обработки, а также обучение модели и её оценка согласно некоторым метрикам.
Рассматривается возможность применения такого метода машинного обучения, как деревья решений, для определения метеорологической дальности видимости на основе других погодных показателей (температура воздуха, атмосферное давление, относительная влажность, скорость и направление ветра, облачность, текущая погода и др.). Описаны процесс сбора и обработки данных, а также обучение модели и её итоговая точностью.
Приведены результаты исследований по разработке автоматизированной классификации снимков дистанционного зондирования Земли внутрихозяйственного землепользования на основе применения объектно ориентированного подхода, машинного обучения и геоинформационного моделирования. Методология классификации включала три этапа: анализ цифровых изображений с выделением пространственных объектов путем предварительной сегментации, классификация пространственных объектов с использованием алгоритмов машинного обучения (RF и SVM), оценка общей точности полученного результата. Для обработки использовали космические снимки Sentinel-2 с мая по апрель на территорию землепользования ОС «Элитная» и ИП ГК(Ф)Х Ковалев С.М. Новосибирской области с пространственным разрешением 10 м в пикселе. Обработка полученных многозональных снимков проходила с применением программного продукта SAGA GIS версии 8.5.1 и QGIS с открытым исходным кодом, создание моделей классификации осуществляли в пакете статистического языка программирования R. Установлено, что общая точность классификации объектов землепользования, отображенных на космических снимках, для территории ОС «Элитная» алгоритмом SVM составила 87,1 % (коэффициент Каппа 0,74), алгоритмом RF – 90,3 % (коэффициент Каппа 0,87). Для территории землепользования ИП ГК(Ф)Х Ковалев С.М. – алгоритмом SVM – 78,4 % (коэффициент Каппа 0,78), алгоритмом RF – 82,3 % (коэффициент Каппа 0,82). Объектно - ориентированный подход в интеграции с машинным обучением способствует эффективной сегментации и классификации снимков дистанционного зондирования для выделения пространственных объектов, дает возможность автоматизировать процесс картографирования территории землепользования и включать эту информацию в геоинформационное моделирование оценки и классификации земель сельскохозяйственного назначения.
Использование технологий генеративного искусственного интеллекта в образовании обладает потенциалом революционизировать процессы обучения и оценивания образовательных результатов, персонализируя учебный процесс, обеспечивая немедленную обратную связь и улучшая общий опыт обучения.
Актуальность исследования обусловлена распространением технологий искусственного интеллекта, дефицитом практик формирующего оценивания учебных достижений в высшем образовании.
Постановка проблемы: существующие отечественные системы электронного обучения имеют ограниченный функционал, что затрудняет их использование в процессе формирующего тестирования.
Целью исследования является изучение возможности и эффективности использования технологий генеративного искусственного интеллекта в формирующем оценивании в высшем образовании.
Задачи исследования – рассмотреть теоретические основы использования инструментов генеративного искусственного интеллекта в оценивании знаний, умений и навыков, проанализировать собственный опыт применения больших языковых моделей в формирующем тестировании в вузе.
Методологическую основу исследования составляют анализ Интернет-ресурсов и литературных источников, методы математической статистики, синтез.
Результаты исследования: изучены возможности использования и эффективность технологий генеративного искусственного интеллекта в формирующем тестировании обучающихся вуза, проанализирован собственный опыт применения больших языковых моделей в формирующем тестировании, определены основные ограничения внедрения этих технологий в учебный процесс, даны рекомендации по организации формирующего тестирования с использованием больших языковых моделей.
Ключевые выводы: большие языковые модели могут быть интегрированы в учебный процесс для оценки формирующих и суммативных тестов, что позволит существенно снизить нагрузку на преподавателей, обеспечить более объективные результаты и, в конечном счете, повысить эффективность учебного процесса.
Стремительное развитие технонауки ставит под вопрос привычные способы восприятия и традиционные практики анализа информации, в частности, одним из вызовов для коммуникационного общества стало развитие искусственного интеллекта, способного создавать изображения, почти неотличимые от живописных и фотографических, это хорошо заметно по тем дискуссиям, которые развиваются сегодня вокруг фотографии и подталкивают нас к рассуждению о семиотическом сдвиге, происходящем в этом поле. В настоящей статье рассматривается три способа работы фотографа с нейросетями, каждый из которых имеет свои границы применимости: обработка снимков, создание изображений на основе стиля знаменитого фотографа, генерация образа «с нуля». Анализируются ключевые примеры нейросетей, находящихся в распоряжении фотографов и художников, указываются их особенности и выразительные возможности, а также те эстетические и этические вопросы, которые актуализирует внедрение искусственного интеллекта в фотографическую практику. По итогам исследования авторы приходят к выводу, что происходящие в поле фотографии семиотические сдвиги бросают вызов традиционным формам репрезентации и оказывают принципиальное воздействие на то, как могут пониматься категории авторства и зрительства в современном социокультурном процессе.
Оптическая когерентная томография — современный высокотехнологичный и информативный метод выявления патологии сетчатки глаза и преретинальных слоёв стекловидного тела. Однако описание и интерпретация результатов исследования требуют высокой квалификации и специальной подготовки врача-офтальмолога, а также значительных временных затрат врача и пациента. Вместе с тем использование математических моделей на основе аппарата искусственных нейронных сетей в настоящее время позволяет автоматизировать многие процессы, связанные с обработкой изображений. Именно поэтому актуально решение задач, связанных с автоматизацией процесса классификации снимков оптической когерентной томографии на основе глубокого обучения моделей искусственных нейронных сетей.
Цель — разработать архитектуры математических (компьютерных) моделей на основе глубокого обучения свёрточных нейронных сетей, предназначенных для классификации снимков оптической когерентной томографии сетчатки глаза; сравнить результаты вычислительных экспериментов, проведённых с использованием средств Python в Google Colaboratory при одно- и многомодельном подходах, и выполнить оценки точности классификации; сделать выводы об оптимальной архитектуре моделей искусственных нейронных сетей и значениях используемых гиперпараметров.
Материалы и методы. Исходный датасет, представляющий собой обезличенные снимки оптической когерентной томографии реальных пациентов, включал более 2000 изображений, полученных непосредственно с прибора в разрешении 1920×969×24 BPP. Количество классов изображений — 12. Для создания обучающего и валидационного наборов данных осуществляли «вырезание» предметной области 1100×550×24 BPP. Изучали различные подходы: возможность использования предобученных свёрточных нейронных сетей c переносом обучения, методики изменения размера и аугментации изображений, а также различные сочетания гиперпараметров моделей искусственных нейронных сетей. При компиляции модели использовали следующие параметры: оптимизатор Adam, функцию потерь categorical_crossentropy, метрику accuracy. Все технологические процессы с изображениями и моделями искусственных нейронных сетей проводили с использованием средств языка Python в Google Colaboratory.
Результаты. Предложены одно- и многомодельный принципы классификации изображений оптической когерентной томографии сетчатки глаза. Вычислительные эксперименты по автоматизированной классификации таких изображений, полученных с томографа DRI OCT Triton, с использованием различных архитектур моделей искусственных нейронных сетей показали точность при обучении и валидации 98–100%, и на дополнительном тесте — 85%, что является удовлетворительным результатом. Выбрана оптимальная архитектура модели искусственной нейронной сети — 6-слойная свёрточная сеть, — и определены значения её гиперпараметров.
Заключение. Результаты глубокого обучения моделей свёрточных нейронных сетей с различной архитектурой, их валидации и тестирования показали удовлетворительную точность классификации снимков оптической когерентной томографии сетчатки глаза. Данные разработки могут быть использованы в системах поддержки принятия решений в области офтальмологии.