Прогнозирование компонент инфляции методами машинного обучения1 (2024)
С задачей прогнозирования инфляции методы машинного обучения справляются не хуже, а зачастую и лучше подходов, основанных на классических эконометрических моделях. Однако, несмотря на наличие временных рядов по ценам для всех товаров и услуг, являющихся отдельными компонентами потребительской корзины, для которой рассчитывается индекс потребительских цен (ИПЦ), и на то, что методы машинного обучения работают точнее с ростом объема данных, в большинстве работ покомпонентные данные ИПЦ не используются. Исследований, посвященных прогнозированию ИПЦ путем агрегации прогнозов индексов цен для отдельных категорий товаров и услуг (bottom-up approach), немного, и на их основании нельзя однозначно утверждать, будет ли агрегированный прогноз точнее, чем прогноз ИПЦ, не использующий покомпонентные данные. Мы показываем на российских данных, что в зависимости от горизонта прогнозирования покомпонентный агрегированный прогноз инфляции может быть до 1,5 раза точнее. Даже при использовании таких ставших уже классическими моделей машинного обучения, как градиентный бустинг или регрессии с регуляризацией, преимущество статистически значимо на горизонтах до полугода. Каждую компоненту инфляции и на каждый горизонт мы прогнозируем отдельной моделью независимо от остальных компонент и от остальных горизонтов.
Идентификаторы и классификаторы
Потребительская корзина включает множество категорий различных товаров и услуг, и факторы, влияющие на цены товаров и услуг этих категорий, могут различаться. Это позволяет предположить, что прогнозирование индекса потребительских цен (ИПЦ) путем агрегации прогнозов индексов цен, построенных для каждой категории в отдельности (bottom-up approach), позволит получить более точный результат, чем классический подход, при котором сразу прогнозируется значение ИПЦ в целом.
Список литературы
1 Крамков В. Улучшает ли учет компонентов ИПЦ качество прогнозов инфляции? // Банк России. Серия докладов об экономических исследованиях. – 2023. – № 112.
2 Almosova A., Andresen N. Nonlinear Inflation Forecasting with Recurrent Neural Networks // Journal of Forecasting. – 2023. – Vol. 42(2). – pp. 240–259. doi: 10.1002/for.2901
3 Atkeson A., Ohanian L. E. Are Phillips Curves Useful for Forecasting Inflation? // Federal Reserve Bank of Minneapolis Quarterly Review. – 2001. – Vol. 25(1). – pp. 2–11.
4 Barkan O., Benchimol J., Caspi I., Cohen E., Hammer A., Koenigstein N. Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks // International Journal of Forecasting. – 2023. – Vol. 39(3). – pp. 1145–1162. doi: 10.1016/j.ijforecast.2022.04.009
5 Baybuza I. Inflation Forecasting Using Machine Learning Methods // Russian Journal of Money and Finance. – 2018. – Vol. 77(4). – pp. 42–59. doi: 10.31477/rjmf.201804.42
6 Bergstra J., Bardenet R., Bengio Y. K., Balázs K. Algorithms for Hyper-Parameter Optimization // Advances in Neural Information Processing Systems 24 (NIPS 2011) / Shawe-Taylor J., Zemel R., Bartlett P., Pereira F., Weinberger K. Q., eds. – Curran Associates, Inc., 2011.
7 Breiman L. Random Forests // Machine Learning. – 2001. – Vol. 45. – pp. 5–32. doi: 10.1023/A:1010933404324
8 Breiman L., Friedman J. H., Olshen R. A., Stone C. J. Classification and Regression Trees. – New York: Chapman and Hall/CRC, 2017.
9 Cleveland R. B., Cleveland W. S., McRae J. E., Terpenning I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess // Journal of Official Statistics. – 1990. – Vol. 6(1). – pp. 3–73.
10 De Livera A. M., Hyndman R. J., Snyder R. D. Forecasting Time Series with Complex Seasonal
Patterns Using Exponential Smoothing // Journal of the American Statistical Association. – 2011. – Vol. 106(496). – pp. 1513–1527. doi: 10.1198/jasa.2011.tm09771
11 Diebold F. X., Mariano R. S. Comparing Predictive Accuracy // Journal of Business and Economic Statistics. – 2002. – Vol. 20(1). – pp. 134–144.
12 Duarte C., Rua A. Forecasting Inflation Through a Bottom-Up Approach: How Bottom Is Bottom? // Economic Modelling. – 2007. – Vol. 24(6). – pp. 941–953. doi: 10.1016/j.econmod.2007.03.004
13 Faust J., Wright J. Forecasting Inflation // Handbook of Economic Forecasting, Vol. 2, Part A / Elliott G., Timmermann A., eds. – Elsevier, 2013. – pp. 2–56. doi: 10.1016/B978-0-444-53683-9.00001-3
14 Harvey D., Leybourne S., Newbold P. Testing the Equality of Prediction Mean Squared Errors // International Journal of Forecasting. – 1997. – Vol. 13(2). – pp. 281–291. doi: 10.1016/S0169-2070(96)00719-4
15 Joseph A., Potjagailo G., Kalamara E., Chakraborty C., Kapetanios G. Forecasting UK Inflation Bottom Up // Bank of England Staff Working Papers. – 2021. – N 915.
16 Mallt S. G., Zhang Z. Matching Pursuits with Time-Frequency Dictionaries // IEEE Transactions on Signal Processing. – 1993. – Vol. 41(12). – pp. 3397–3415.
17 Mamedli M., Shibitov D. Forecasting Russian CPI with Data Vintages and Machine Learning Techniques // Bank of Russia Working Paper Series. – 2021.
18 Medeiros M. C., Vasconcelos G. F. R., Veiga Á., Zilberman E. Forecasting Inflation in a Data- Rich Environment: The Benefits of Machine Learning Methods // Journal of Business and Economic Statistics. – 2021. – Vol. 39(1). – pp. 98–119. doi: 10.1080/07350015.2019.1637745
19 Pavlov E. Forecasting Inflation in Russia Using Neural Networks // Russian Journal of Money and Finance. – 2020. – Vol. 79(1). – pp. 57–73. doi: 10.31477/rjmf.202001.57
20 Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., Gulin A. CatBoost: Unbiased Boosting with Categorical Features // arXiv Preprint. – 2019. – arXiv:1706.09516v5. doi: 10.48550/arXiv.1706.09516
21 Semiturkin O., Shevelev A. Correct Comparison of Predictive Features of Machine Learning
Мodels the Case of Forecasting Inflation Rates in Siberia // Russian Journal of Money and Finance. – 2023. – Vol. 82(1). – pp. 87–103.
22 Stock J. H., Watson M. W. Why Has U.S. Inflation Become Harder to Forecast? // Journal of Money, Credit and Banking. – 2007. – Vol. 39(1). – pp. 3–33. doi: 10.1111/j.1538-4616.2007.00014.x
23 Taylor S. J., Letham B. Forecasting at Scale // PeerJ Preprints. – 2017. – Vol. 5. – Preprint e3190v2. doi: 10.7287/peerj.preprints.3190v2
24 Wipf D., Nagarajan S. A New View of Automatic Relevance Determination // Advances in Neural Information Processing Systems (NIPS 2007) / Platt J., Koller D., Singer Y., Roweis S., eds. – 2007. – Vol. 20.
25 Zou H., Hastie T. Regularization and Variable Selection via the Elastic Net // Journal of the Royal Statistical Society. Series B: Statistical Methodology. – 2005. – Vol. 67(2). – pp. 301–320. doi: 10.1111/j.1467-9868.2005.00503.x
Выпуск
Другие статьи выпуска
В начале июля 2024 г. состоялся XII международный семинар Банка России, Российской экономической школы и базовой кафедры Банка России в Национальном исследовательском университете «Высшая школа экономики» на тему «Конкуренция в финансовом секторе – барьеры, вызовы и пути дальнейшего развития». На семинаре были представлены доклады, посвященные оценке конкуренции в банковском секторе России, экономическим причинам доминирования крупных игроков в отдельных сегментах финансового рынка, влиянию цифровизации и развития экосистем на конкуренцию в финансовом секторе, выгодам и издержкам для общества.
В начале июля 2024 г. Европейский центральный банк провел форум по вопросам политики центральных банков «Денежно-кредитная политика в эпоху трансформации»2. В этом обзоре кратко описана академическая часть конференции с фокусом на темах инфляции, экономического роста, климатических и геополитических рисков, имеющих прикладное значение для политики центральных банков, а также на теме долгосрочных равновесных процентных ставок и их роли в принятии решений ёпо денежно-кредитной политике.
Весной 2020 г. пандемия COVID-19 вынудила регуляторов фондовых рынков ряда европейских стран ввести запрет на короткие продажи. Я анализирую, как этот запрет повлиял на волатильность рынков и риск экстремальных изменений цен на акции. Запрет коротких продаж считается средством предотвращения крупных обвалов фондового рынка, поскольку устранение продавцов, играющих на понижение, уменьшает вероятность падения цен на акции. Я прихожу к выводу, что введение такого запрета увеличивает показатели рыночного риска, такие как стоимость под риском и ожидаемые потери доходности акций. Установленные регуляторами требования к капиталу банков в части рыночного риска основаны на вышеупомянутых показателях. Резкое изменение любого из них усиливает уязвимость банков к колебаниям цен на акции и подталкивает их к продаже активов для устранения нарушения требований к достаточности капитала. Дополнительные продажи, вызванные последним фактором, ведут к дальнейшему снижению цен на акции. Продажа активов во время кризисов вряд ли может быть прибыльной, что, в свою очередь, также уменьшает капитал. Таким образом, запрет коротких продаж, призванный уменьшить панику на рынках, ведет к дальнейшему падению цен на акции в экономиках, где банки – ключевые игроки. Я показываю, используя данные европейских рынков за 2020 г., что запрет коротких продаж ведет к значительному повышению стоимости под риском (от 15 до 18% в зависимости от методологии расчета) и росту ожидаемых потерь на 30%.
Эта работа посвящена применению ансамблевых и нейросетевых методов машинного обучения, в частности методов CatBoost и LightGBM и сверточных нейронных сетей, для прогнозирования ВВП. В исследовании используется база винтажных данных, что позволяет выявить влияние пересмотров статистической информации на точность моделей. Полученные нами результаты показывают, что комбинации нейросетевых методов сохраняют прогнозное преимущество по сравнению с эталонными моделями – авторегрессией первого порядка, динамической факторной моделью и байесовской векторной авторегрессией – на панели стран, в том числе в периоды, включающие пандемический кризис, на предварительных и пересмотренных данных. Согласно эконометрическому тесту на доверительное множество моделей, к числу наиболее точных методов прогнозирования ВВП относятся сверточные и рекуррентные нейронные сети. Пересмотры статистических данных приводят к росту среднеквадратической ошибки эталонных моделей, ансамблевых и нейросетевых методов машинного обучения.
В работе исследуется сходимость темпов роста цен на продовольственные товары в регионах России. Проведенный анализ подтверждает гипотезу о конвергенции региональной продовольственной инфляции в 2013–2022 гг. Для определения возможных изменений в динамике применяется панельное тестирование на единичный корень с использованием метода скользящего окна. Результаты тестов показывают, что за 2013–2022 гг. сходимость региональных индексов продовольственных цен к общероссийскому уровню инфляции ускорилась. Мы также рассчитываем матрицу коэффициентов взаимной конвергенции. Ее визуализация с использованием многомерного шкалирования позволяет выделить группы регионов с высоким уровнем сходимости по отношению друг к другу. В результате проведенного анализа к факторам, сдерживающим конвергенцию, отнесены различия в структуре весов товаров, используемых при расчете индексов потребительских цен, в уровне транспортно-логистической связанности и степени проникновения сетевой розницы. Исследование дополняет литературу по конвергенции инфляции тем, что не только проводит проверку гипотезы конвергенции, но и оценивает изменение сходимости в динамике, а также рассматривает взаимную конвергенцию темпов роста цен в регионах.
Издательство
- Издательство
- БАНК РОССИИ
- Регион
- Россия, Москва
- Почтовый адрес
- 107016, г Москва, Мещанский р-н, ул Неглинная, д 12 к в
- Юр. адрес
- 107016, г Москва, Мещанский р-н, ул Неглинная, д 12 к в
- ФИО
- Набиуллина Эльвира Сахипзадовна (ПРЕДСЕДАТЕЛЬ БАНКА РОССИИ)
- Контактный телефон
- +7 (495) 9747664
- Сайт
- https://cbr.ru/