В данной работе описывается метод вычисления резонансной кривой зависимости коэффициента отражения при возбуждении поверхностного плазмонного резонанса (ППР) для многослойной структуры. Для проверки метода были получены магнетронным напылением плёнки в виде чередующихся тонких слоёв SiC и SiO2. Сравнение экспериментальных и расчётных данных показало хорошее согласие в полученных результатах. Возбуждаемые поверхностные электромагнитные волны (ПЭВ) распространяются в узком приповерхностном слое и имеют широкое применение в научных приложениях: в исследованиях поверхности полупроводников и металлов, в исследованиях переходных, адсорбционных и окисных слоёв, в исследованиях всевозможных физических и химических процессов, протекающих в приповерхностной области. На основе модельных вычислений показаны области применимости рассмотренных методов.
Проблема получения мелкодисперсных пленок соединений металлов и углерода, в особенности, получение таких тонкопленочных структур, как соединения меди, серебра или золота с углеродом и применение их для различных областей техники, давно обсуждается в литературе. Интерес к этой теме сейчас достаточно высок, так как известно, что уменьшение размера кристаллитов ниже определённой величины приводит к потере некоторых объемных свойств вещества или к значительному их изменению. Это происходит при уменьшении размеров зерен до нескольких десятков нанометров. Изучению свойств мелкодисперсных структур в настоящее время посвящено много работ. В нашей работе получены экспериментальные данные по распылению составной графито-медной мишени при различных режимах работы магнетрона. В частности, получены графито-медные наноструктуры в виде монослойных покрытий при разном содержании меди в плёнке. Представлена схема экспериментальной установки с описанием особенностей ее применения для управляемого формирования тонкопленочных покрытий. Приведены значения параметров магнетронного распыления и размеров мишени, необходимых для получения мелкодисперсных покрытий и эффективного напыления. В ходе проведенных экспериментов нами были отмечены некоторые особенности процесса напыления таких плёнок. Эти особенности заключаются в том, что процесс формирования плёнок, состоящих из монослоя мелкодисперсных элементов, часто нестабилен и при одинаковых условиях напыления иногда приводит к образованию сплошной графитовой пленки. В настоящей работе сделана попытка найти устойчивые режимы получения таких покрытий.
В данной работе представлены результаты применения магнетронной распылительной системы. Методом магнетронного распыления составной графитово-медной мишени получены поверхностные медно-углеродные структуры и выявлены условия их образования. Приведены характерные изображения структур на подложке, полученные с помощью атомно-силовой микроскопии. Найдены режимы распыления графитово-медной мишени. Показано, что на эффективность процесса распыления, кроме конструкции магнетрона и мишени, во многом влияют условия эксперимента. В работе экспериментально подобрана плотность потока распылённых атомов на подложку, температура мишени и подложки, давление аргона. Найдено, что подобные структуры не образуются без промежуточного металлического слоя. В нашем случае это была пленка меди. В общем виде учесть влияние всех этих параметров на полученный результат для расчета процесса распыления составной мишени не представляется возможным. Поэтому трудно оценить возможность получения подобных структур с другими металлами.
Процесс нанесения металлических или диэлектрических плёнок и контроль их толщины и качества часто определяет успех или неуспех эксперимента. Измерение толщины обеспечивают соответствующие датчики, устанавливаемые в непосредственной близости от подложки. Кроме того, известно, что функциональные возможности любой напылительной системы повышаются при подаче отрицательного напряжения смещения на подложку. Это позволяет получать пленки более высокой чистоты, управлять параметрами кристаллической структуры и другими свойствами плёнок. При возникновении на подложке отрицательного потенциала смещения в момент подачи на неё высокочастотного (ВЧ) напряжения происходит направленное движение в сторону растущей плёнки положительно заряженных ионов рабочего газа, что приводит к травлению поверхности. В данной работе для создания устройства контроля толщины были объединены два физических процесса: травление подложки при подаче на неё отрицательного смещения и оптический метод контроля растущей плёнки. Лежащий в основе системы контроля роста пленок оптический метод делает предложенное устройство в значительной степени универсальным.
Предложена система контроля толщины напыляемых металлических плёнок на стеклянные призмы. Показано, что с её помощью можно контролировать толщину тонких (5–100 нм) металлических плёнок на призмах для возбуждения поверхностного плазмонного резонанса. Относительная простота схемы устройства определяется тем, что для возбуждения используется расходящийся пучок монохроматического лазерного излучения, который формируется выпуклым сферическим зеркалом. Система также позволяет автоматически регистрировать и сохранять результаты изменения параметров в течение всего процесса напыления. В основе конструкции лежит эффект нарушенного полного внутреннего отражения, реализуемый в схеме Кречмана.
Плотность пленочных покрытий соединений галогенидов серебра определяется структурой получаемых пленок, которая зависит от их толщины и условий формирования. Пористость и, как следствие, шероховатость пленок галогенидов серебра определяется структурой самого материала AgI при иодизации серебра, нанесенного на гладкую поверхность. Пространственные параметры для пленок различной толщины определялись и рассчитывались с помощью атомно-силовой микроскопии. Получены и исследованы спектры пропускания, которые использовались для оценки распределения пор в исследуемых образцах и сравнивались с данными, полученными с помощью атомно-силовой микроскопии.
Современные технологические операции в микроэлектронике, интегральной фотонике, а также в современных биомедицинских исследованиях требуют прецизионных измерений геометрических и диэлектрических параметров наноразмерных слоёв. В некоторых случаях из-за специфики формирования нанометровых слоёв, заключающейся в островковом (кластерном) механизме роста на начальных стадиях, использование традиционных оптических методов не позволяет получить объективную информацию. Настоящая статья посвящена исследованию метода контроля параметров формирования кластерных нанометровых плёнок с помощью плазмонной спектроскопии.
Согласно соотношению неопределенности микроструктуры не могут находиться в состоянии покоя даже при нулевой температуре. Создание ленгмюровских пленок приводит к коллективным движениям отдельных дифильных молекул, то есть к созданию волновых движений возникающих в ленгмюровских пленках. Согласно квантовой теории волновые движения поля могут быть описаны как рождение квазичастиц. В статье показано, что наличие волновых процессов приводит к перестройке структур, собранных из набора монослоев ленгмюровских пленок. Эти процессы можно описывать, исследуя устойчивость таких многослойных структур. В данной статье рассматривается процесс спонтанного нарушения симметрии и возможность спонтанных структурных переходов в ленгмюровских пленках. На простой модели определяются условия, при которых происходят такие переходы и устанавливается, существуют ли устойчивые состояния, такие как X- или Z-структуры, при структурных переходах из Y-типа пленки.