С использованием форвакуумного плазменного источника электронов осуществлен процесс электронно-лучевого испарения алюмооксидной керамики в диапазоне давлений 5—15 Па. При плотности мощности электронного пучка 103 Вт/см2 скорость испарения керамики составляла 4 г/ч. Полученные результаты открывают возможность эффективного нанесения керамических покрытий на основе электронно-пучковых методов.
Представлена конструкция и принцип работы модернизированного квадрупольного анализатора остаточной атмосферы. Модернизация анализатора заключалась в замене ионизатора устройства на извлекающий ионы узел. Учитывая особенности генерации пучковой плазмы и специфику форвакуумного диапазона давлений данная замена в сочетании с подачей на коллектор электронного пучка положительного относительно земли потенциала позволила проводить мониторинг масс-зарядового состава такой плазмы. Показаны результаты исследований масс-зарядового состава ионов пучковой плазмы различных газов, генерируемой непрерывным электронным пучком с током порядка 30 мА при давлении в области его распространения до 10 Па. Установлено, что в пучковой плазме генерируемой форвакуумным электронным источником наблюдаются только однократно ионизованные атомы напускаемых и остаточных газов независимо от энергии и тока электронного пучка.
Обзор посвящен анализу преимуществ и недостатков существующих реактивных методов осаждения пленок оксида титана. Особое внимание уделено традиционным методам – магнетронному распылению в атмосфере активных газов и вакуумно-дуговому осаждению, а также обсуждаются возможности реактивного электронно-лучевого испарения, в том числе альтернативного электронно-лучевого испарения титана в форвакууме (1–15 Па) в атмосфере кислорода с последующим осаждением паров на подложку. Показано, что к преимуществам электронно-лучевого испарения в форвакууме следует отнести простоту реализации и возможность получения стехиометрических пленок TiO2, причем при более высокой скорости осаждения и меньшем энергопотреблении.
Представлены результаты экспериментов по исследованию взаимодействия электронного пучка с поверхностью непроводящей мишени в форвакуумной области давлений (1–10 Па). Показано, что распределение потенциала существенно зависит от энергии пучка, давления газа и плотности тока электронного пучка на мишень. На основе численного моделирования анализируется эволюция распределения потенциала на поверхности мишени при изменении профиля распределения плотности тока пучковых электронов.
Представлены результаты по исследованию масс-зарядового состава ионов пучковой плазмы, генерируемой при испарении твердотельной керамической мишени диоксида циркония частично стабилизированного оксидом иттрия в среде инертных и химически активного газов электронным пучком в форвакуумном диапазоне давлений. Мониторинг массзарядового состава ионов пучковой плазмы осуществлялся с использованием модернизированного масс-анализатора остаточной атмосферы RGA-300. Показано влияние состава рабочего газа на масс-спектры ионов материала испаряемой мишени.
В статье приведен обзор последних достижений в области генерации и исследования пучковой плазмы, получаемой при ионизации газа стационарным низкоэнергетичным пучком электронов в форвакуумном диапазоне давлений (1–100 Па). Представлены особенности взаимодействия стационарного электронного пучка c создаваемой им плазмой при его транспортировке в вакуумной камере большого объема, а также результаты исследования параметров плазмы, создаваемой при инжекции электронного пучка в сосуд с диэлектрическими стенками. Показано, что в зависимости от параметров электронного пучка, давления и рода газа возможно создание условий коллективного взаимодействия с зажиганием пучково-плазменного разряда, отличающегося повышенным значением концентрации и температуры плазменных электронов.
Предложен метод экспериментального определения соотношения ионного и атомного компонентов бора в процессе формирования покрытия магнетронным распылением и электронно-лучевым испарением. Метод основан на сравнительном анализе приращения веса подложек оригинальных конденсационных зондов с поперечным магнитным полем и без него. Установлено, что при электронно-лучевом испарении определяющий вклад в формирование покрытия вносит ионная составляющая, а при магнетронном распылении – атомная. На основании оценки каждого из этих вкладов определено отношение концентрации атомарного и ионизованного компонентов бора в плазме электронного пучка и в плазме магнетронного разряда.
Представлены результаты эксперимента по электронно-лучевому осаждению керамических покрытий оксида циркония, стабилизированного оксидом иттрия с использованием форвакуумного плазменного источника электронов. Методом растровой электронной микроскопии получены данные о морфологии и элементном анализе поверхности покрытий. Структурно-фазовый состав образцов выявил наличие кристаллической структуры синтезированных покрытий с содержанием моноклинной и тетрагональной фаз. Методом Оливера-Фарра получены значения твердости и моду-ля упругости покрытий.
Приводятся результаты исследования влияния подслоя хрома на магнитные свойства (эффективную намагниченность насыщения) магнито-диэлектрических покрытий, состоящих из тонких (1,2–1,8 мкм) слоев магнитных металлов (никеля, железа) и алюмооксидной керамики, и получаемых при испарении мишеней электронным пучком в форвакуумном диапазоне (5–8 Па) давлений гелия. Обнаружено, что добавление подслоя хрома ухудшает магнитные свойства пленок, поэтому синтез магнито-диэлектрических покрытий в описанных условиях целесообразно осуществлять без такого подслоя.
Описаны результаты эксперимента по осаждению тонкопленочного магнито-диэлектрического покрытия при последовательном электронно-лучевом испарении в гелии и кислороде форвакуумного диапазона давлений (5 Па) мишени из стали и алюмооксидной керамики. Методом ферромагнитного резонанса продемонстрировано наличие у покрытия магнитных свойств, рентгенографическое исследование под-твердило наличие в покрытии магнитного оксида Fe3O4, а измеренные оптическим профилометром толщины покрытий составили 3–6 мкм.