Разработана модель расчета угла разориентации отражающих кристаллографических плоскостей и поверхности полупроводникового образца средствами рентгеновской дифрактометрии высокого разрешения. Модель позволяет минимизировать механические аппаратные погрешности, в том числе неточности позиционирования и перемещения, и определить оптимальные параметры расположения образца относительно падающего излучения для корректного проведения исследований совершенства кристаллической структуры. Описан принцип проведения эксперимента и математическая модель для обработки полученных результатов. Для определения наличия макродефектов в кристаллической структуре, в частности, блоков, проводилось построение карты распределения параметров кривых качания по всему образцу (картирование) с использованием разработанной модели. Это позволило определить границы блоков и их взаимную ориентацию в продольных относительно пластины направлениях. Модель опробовалась на пластине объемного монокристалла антимонида индия, выращенного методом Чохральского, при этом подготовленной методами химикодинамического и химико-механического полирования.
Проведена разработка методики контроля распределения концентрации носителей заряда по профилю многослойных гетероэпитаксиальных структур (ГЭС) с квантоворазмерной активной областью на основе гетеропары AlGaAs/GaAs, выращенных методом молекулярно-лучевой эпитаксии, средствами электрохимического вольт-фарадного профилирования (ECV). Разработана расчетная модель области пространственного заряда, формируемой на границе электролит–полупроводник. Проведен анализ ECV-профилей образцов гетеро-эпитаксиальных структур, выращенных на подложках GaAs <100>. Проведен расчет граничных значений глубины формируемой области пространственного заряда для различных концентраций носителей заряда в измеряемых слоях. Сделано заключение об ограниченности метода для контроля распределения концентрации носителей в квантоворазмерной области гетероэпитаксиальных структур.
Разработана методика контроля спектров фотолюминесценции для многослойных гетероэпитаксиальных структур с квантовыми ямами на основе AlGaAs/GaAs, выращенных методом молекулярно-лучевой эпитаксии. Проведен расчет уровней размерного квантования в квантовых ямах. Построены тепловые карты распределения значений длины волны и интенсивности в максимуме спектра фотолюминесценции по поверхности эпитаксиальных слоев различного состава. Картографирование позволило оценить однородность распределения состава и толщины эпитаксиальных слоев по поверхности образцов. Проведенное исследование является перспективным для усовершенствования методик входного и межоперационного контроля многослойных гетероэпитаксиальных структур, используемых в технологии изготовления матричных фотоприемных устройств ИК-диапазона.
Изучены свойства спектров рентгеновского дифракционного отражения многослойных периодических гетероструктур AlGaAs/GaAs в зависимости от толщины и состава материала слоев и количества периодов. Показано, что количество и интенсивность дополнительных дифракционных максимумов на кривых качания возрастает с увеличением толщины слоев и количества периодов. Состав слоев не влияет на количество максимумов, а изменяет их угловое положение и полуширину. Проводилось сравнение численных расчетов с экспериментальными спектрами, измеренными для гетероструктуры, выращенной методом молекулярнопучковой эпитаксии и состоящей из 50 периодов, в которых барьер AlxGa1-xAs имел состав x 26,7 % и толщину d 51,6 нм, а квантовая яма GaAs – толщину d 4,6 нм. Установлено хорошее соответствие рассчитанных параметров с технологическими данными и результатами измерения на просвечивающем электронном микроскопе.
Методами нейтронографии и высокоразрешающей рентгеновской дифрактометрии исследованы структурные характеристики гетероструктур на основе гетеропары InGaAs/GaAs, в том числе многослойной периодической гетероструктуры с квантовыми ямами InGaAs, содержащей 30 периодов. Продемонстрированы необходимость измерения карт обратного пространства около симметричных и асимметричных узлов отражения в дополнение к кривым дифракционного отражения для выявления качественных и количественных параметров кристаллической структуры гетероэпитаксиальных материалов, а также возможность применения такого измерения не только для гетероструктур, представляющих собой одиночный слой на подложке, а также для многослойных периодических эпитаксиальных структур. По результатам измерений методом рентгеновской дифрактометрии вычислены параметры кристаллических решёток слоёв InGaAs и GaAs в вертикальном и латеральном направлениях относительно плоскости поверхности подложки, толщины слоёв l и состав x твёрдого раствора InxGa1-xAs в гетероструктурах, оценена степень релаксации слоёв по измерениям карт обратного пространства около асимметричных узлов отражения. Методом нейтронографии была измерена многослойная гетероструктура, получен профиль толщины слоёв сверхрешётки по глубине структуры, оценены средние значения толщин квантовых ям InGaAs и барьеров GaAs. Установлено соответствие между результатами измерений средних толщин слоёв и периода сверхрешётки для многослойной периодической гетероструктуры различными методами, а также с технологическими ростовыми данными.
Рассмотрены основные свойства композиционных сверхрешеток II типа (T2SL). Приведено описание различных типов гетеропереходов, энергетических условий их реализации, а также представлены результаты теоретических и экспериментальных исследований оптических и электрических свойств T2SL на основе InAs/GaSb, InAs/GaInSb и InAs/InAsSb. По результатам качественного анализа и оценки характеристик сверхрешеток II типа относительно классических полупроводниковых соединений, используемых в ИК-фотоэлектронике (HgCdTe, InSb и QWIP-структур), выявлены и описаны преимущества и недостатки T2SL. Проведено сравнение сверхрешеток
II типа на основе InAs/GaSb, InAs/GaInSb и InAs/InAsSb, по результатам которого показаны перспективы применения T2SL в технологии изготовления современных и перспективных фотоприемников и фотоприемных устройств ИК-диапазона.
Методом молекулярно-пучковой эпитаксии на подложках InSb(100) получена барьерно-диодная (nBn) структура с униполярным барьером In0,8Al0,2Sb. Кристаллическое совершенство структуры и её соответствие номинально заложенному дизайну подтверждено с помощью рентгеноструктурного анализа. Электронная подсистема полученной nBn-структуры охарактеризована с помощью измерений микроскопии растекания тока на сколе (011).