Представлено определение конкурентоспособности организации, рассмотрены ее критерии, оценены позиции искусственного интеллекта в рамках критериев конкурентоспособности организации. Рассмотрены отечественные и зарубежные инструменты практического применения для бизнеса, которые созданы на базе искусственного интеллекта и охватывают все актуальные бизнес-процессы в разнообразных отраслях, таких как производство, сельское хозяйство, финансы и страхование, информационные технологии, маркетинг, менеджмент, творческие виды деятельности, транспорт, здравоохранение. Рассмотрены конкретные бизнес-процессы, включающие в себя работу с персоналом, логистику, производство и реализацию продукции и услуг, коммуникацию с клиентами, контрагентами и персоналом, сервис и т. п. Приведено обоснование влияния применения технологий искусственного интеллекта на конкурентоспособность и эффективность бизнеса в четвертой промышленной революции. Примеры приведены в конкретных и измеримых единицах; указан процентный прирост производительности за счет внедрения рассматриваемых технологий. Рассмотрены основные технические параметры нейронных сетей и искусственного интеллекта. Дана оценка экономического эффекта от внедрения технологий на базе искусственного интеллекта. Также в общих чертах отмечено влияние анализируемых технологий на рынок труда, рассмотрены некоторые прогнозы, проанализирована структура вакансий в стране-лидере по IT. Рассмотрены социологические опросы относительно общественного отношения к технологиям на базе искусственного интеллекта. Сделаны выводы о влиянии применения технологий искусственного интеллекта на эффективность и конкурентоспособность бизнеса, отмечены сильные и слабые стороны рассматриваемых технологий, рассмотрены тенденции развития и распространения технологий на базе искусственного интеллекта.
В статье дано уточнение термина «морские робототехнические средства» и на этой основе определено, что создание МРС военного назначения требует существенной проработки ядра наиболее важных технологий, необходимых для создания всей номенклатуры перспективных робототехнических средств. При этом типовой образец МРС военного назначения может быть представлен в виде совокупности функционально связанных элементов и специализированного оборудования. Такое представление типового МРС позволяет выделить технологии, критичные для разработки основных элементов. Обладание такими технологиями – залог успеха в обеспечении необходимой степени автономности и интеллектуальности МРС. Особо отмечена важность развития искусственных нейронных сетей, которые уже научились распознавать отдельные объекты. Однако обоснованно высказываются опасения, что автономные МРС, каким бы совершенным искусственным интеллектом они ни обладали, не смогут, как человек, анализировать поведение находящихся перед ними людей. В связи с этим принципиально важное значение имеет наращивание быстродействия и миниатюризация разрабатываемых микропроцессоров. Кроме того, в интересах создания МРС уделяется серьезное внимание перспективным средствам связи, которые, по сути, являются критическими элементами успешного применения МРС. Военное руководство ведущих зарубежных стран проводит целенаправленную, долгосрочную политику в области разработки перспективных МРС вооруженной борьбы, рассчитывая в перспективе разработать инновационные и эффективные средства для обеспечения национальной безопасности, борьбы с терроризмом и регулярными угрозами, а также эффективного проведения современных и будущих операций. Обоснованы факторы и приведены причины быстрого развития и широкого применения МРС в ВМФ США. Ключевыми технологиями, позволяющими компенсировать отсутствие оператора в кабине стали технологии создания микропроцессорной техники и перспективных коммуникационных средств. Оба типа технологий пришли из гражданской сферы — компьютерной индустрии, позволившей использовать для МРС современные микропроцессоры, системы радиосвязи и передачи данных, а также специальные способы сжатия и защиты информации.
Целью работы является реализация интеллектуальных алгоритмов синтеза систем управления электроприводами систем энергоснабжения на объектах водного транспорта с использованием искусственных нейронных сетей. Использование подобных интеллектуальных алгоритмов позволит на практике осуществлять цифровую трансформацию аппаратных узлов регуляторов (контроллеров) в системах управления различными объектами, в том числе электроприводами, в математические алгоритмы, базирующиеся на нейросетевых контроллерах. Такие контроллеры, например, с использованием эталонной модели, являются более предпочтительными при управлении нелинейными объектами, поскольку нейросети, на которых они базируются, нелинейны. В связи с этим существенно расширена область их применения в дальнейшем развитии методов компьютерного мониторинга и параметрической идентификации моделей судовых и береговых объектов управления энергоснабжением, а также анализа и прогнозирования показателей энергоэффективности их режимов работы. Рассмотрена процедура синтеза нейросетевого регулятора, построенного на основе эталонной модели, для стабилизации угловой скорости вращения двигателя постоянного тока с целью компенсации колебаний, возникающих в контуре управления приводом. С использованием PID-тюнера определены параметры PID-регулятора, существенно влияющие на качество управления и позволившие ему в составе с типовым астатическим звеном первого порядка выполнять функции эталонного регулятора для обучения нейросетевого регулятора. Показано, что выбранные параметры нейронной модели объекта управления и нейросетевого эталонного регулятора позволили существенно улучшить показатели качества переходного процесса и устранить колебания в приводе управления двигателя постоянного тока. Приведены показатели и характеристики качества обучения нейросетевого регулятора и нейронной модели объекта при выбранных параметрах обучения. Предложен алгоритм обучения нейронной модели управляемого объекта и нейросетевого регулятора модели, базирующийся на динамическом характере обратного распространения ошибки отклонений значений выходных сигналов от эталонных в многослойной нейронной сети с целью ее коррекции за счет введения поправок в значения весовых коэффициентов синаптических связей. Алгоритм может быть применим в системах управления электроприводами безэкипажных объектов, как летательных, так водного и наземного базирования, на внутреннем водном транспорте.
Наиболее прогрессивным направлением выявление и оценка радиационной, химической и биологической (РХБ) обстановки является внедрение технологий на основе искусственного интеллекта. Цель работы – разработка архитектуры перспективной системы мониторинга радиационной, химической и биологической обстановки с использованием искусственного интеллекта. Информационная база исследования. Публикации по применению математических моделей в ИИ, доступные через сеть «Интернет». Метод исследования – аналитический, от общего к частному. Рассматривали особенности использования искусственного интеллекта в автоматизированных системах управления. Результаты и обсуждение. Конфронтации с Украиной под протекторатом Запада носят многовариантный пространственный характер, и требуют постоянного мониторинга в условиях недостатка конкретной информации. Применение технологий ИИ позволит выйти за рамки простого отображения текущей ситуации, предоставляя инструменты прогнозирования развития событий. Предлагаемая архитектура перспективной системы предполагает создание единой базы данных, наполняемой верифицированной информацией из открытых источников. Разработанная структура веб-приложения, представляющего собой интерактивный интерфейс для анализа и реагирования на изменения РХБ обстановки, включающая в себя возможность между информационными слоями и получение данных в режиме реального времени. Вывод. Применение нейросетевых технологий войсками РХБ защиты позволит осуществлять поиск по заданным параметрам и проводить ретроспективный анализ данных, тем самым качественно повлияет на эффективность мониторинга РХБ угроз для войск и населения Российской Федерации.
Рассматривается применение нейронных сетей для детектирования пространственных ключевых точек человека при выполнении спортивных упражнений. Технология детекции ключевых точек позволяет отслеживать движения спортсменов в реальном времени, проводить глубокий анализ их техники и автоматизировать выполнение упражнений. Это помогает тренерам выявлять слабые места и совершенствовать навыки спортсменов. Основное внимание уделено методам 2D- и 3D-детекции ключевых точек, их применению в спорте и анализу эффективности. Приводятся результаты 3D-детекции ключевых точек для спортсмена выполняющего упражнение.
Представлены основные особенности моделирования сложных распределенных процессов, отражена актуальность исследования и важность моделирования таких процессов. Рассматривается развитие окрестностного подхода, труды отечественных и зарубежных авторов, внесших значительный вклад в развитие математического моделирования сложных динамических систем. Приведены виды окрестностных моделей и отражено положение нового направления иерархических динамических нейро-окрестностных моделей в классе окрестностных моделей. Представлены преимущества развития данного подхода, а именно улучшение интерпретируемости модели при одновременном обеспечении достаточной точности с обобщающей способностью и устойчивостью к шуму. Выделены основные этапы построения и представлены сферы применения иерархических динамических нейро-окрестностных моделей. Отмечено три способа представления их структуры: графический, теоретико-множественный и матричный. Графический способ представления основывается на графах, разделенных на два слоя, которые описывают связи между узлами по переходам и по выходам соответственно. Показаны схемы слоев и общая схема узла исследуемой модели по переходам и выходам. Теоретико-множественный способ описывает модель в виде множеств узлов и иерархических окрестностных связей между ними. Матричный способ позволяет представить модель в виде матриц смежности для переходов и выходов по состояниям и по внешним воздействиям соответственно. Приведено подробное описание иерархических динамических нейро-окрестностных моделей и нейронных сетей в узлах. Описан алгоритм идентификации разработанного подхода, показана схема алгоритма идентификации. Приведен пример построения иерархической динамической нейро-окрестностной модели прогноза общего энергопотребления бытовой техники в доме с учетом отопления и погодных условий в реализованной программе Python с автоматическим подбором оптимальных параметров модели. Приведено описание исходных данных, взятых с сайта Kaggle. Проведена подготовка данных, на основе которых выполнено обучение и тестирование полученной модели. Показана схема иерархической динамической нейро-окрестностной модели прогнозируемого процесса. Сделаны выводы по проделанному исследованию.
Обнаружение пожара на ранних стадиях является важным фактором, способным обеспечить снижение ущерба экономике и экологии, а также уменьшения количества пострадавших. Несмотря на возрастающую популярность нейронных сетей как современного метода решения задач в сфере компьютерного зрения, в работах в данной предметной области часто возникают методологические проблемы, ведущие к снижению или полному обесцениванию практических результатов. Данное исследование посвящено поиску таких проблем среди имеющихся работ по обнаружению пожара. В первом разделе проведен контрастный анализ двух работ, в ходе которого были выделены 11 метакритериев для оценки качества исследований. Во втором разделе проведен обзор нескольких работ, посвященных обнаружению пожара в различных условиях, как «классическими» методами, так и с помощью сверточных нейронных сетей. Показана важность правильного выбора метрик, необходимость выбора модели как процесса, полноценного описания исходных данных.
В данной обзорной статье представлен анализ основных направлений исследований по теме классификация объектов на изображении методами компьютерного зрения. Методы компьютерного зрения позволяют автоматизировать процесс выделения семантического смысла из изображений. Под классификацией объектов на изображении понимается локализация объектов, интересующих исследователя, и соотнесение их с определенным классом. Актуальность данной темы закреплена в государственной программе: национальная стратегия развития искусственного интеллекта на период до 2030 года. Так же в статье приведена статистика публикационной активности научных авторов по теме «компьютерное зрение», которая показывает актуальность данного направления. Работа имеет следующую структуру: во введении статьи приведены различные статистики, отражающие актуальность темы. Далее приведен обзор научных исследований посвященных решению прикладных аспектов задачи классификации объектов на изображении в различных областях человеческой деятельности. Основной упор сделан на следующие прикладные области: медицина, промышленность, безопасность, транспорт и военное дело. Далее приведен анализ методов, которые используются для решения задачи классификации объектов на изображении. Автор выделяет две группы методов: классические и нейросетевые методы. Под классическими алгоритмами и методами понимается подход к решению задачи классификации объектов на изображении, в котором не используются искусственные нейронные сети. Выводы. Тема исследования на сегодня является актуальной, что подтверждено статистикой и государственными программами. Для классических методов выявлены следующие недостатки: для каждой новой прикладной задачи требуется построение алгоритма ее решения, трудоемкость выделения значимых признаков и неустойчивость при работе с определенными видами данных. Для нейросетевых методов основным недостатком является зависимость конечной модели от качества набора данных, на котором она обучается.
В статье рассматривается вопрос применения нейронных сетей в качестве персональных ассистентов современного педагога. Приводится алгоритм самостоятельного создания чат-бота, описывается алгоритм профилирования нейронной сети за счет изменения контекста ее работы по умолчанию. Важным фактором является наличие инструкции, где подробно, с иллюстрациями, показан весь процесс создания такого чат-бота. Ввиду отсутствия ограничений на количество чат-ботов у современного педагога появляется возможность самостоятельно создать команду виртуальных ассистентов, которые станут его надежной опорой в непрофильных для него задачах.
Проблема и цель. Целью является получение данных в результате моделирования с привлечением нейросети и обоснование возможности использования аппарата искусственных нейронных сетей в тепличном комплексе.
Методология. Агропромышленный комплекс (АПК), как отрасль в целом, невозможен без наличия в нем методов и способов производства, требующих заметного количества внедрённых средств автоматизации производства и управления. Управление практически любой системой невозможно без обработки больших объёмов статистических данных. Использование системы управления тепличным комплексом в сфере АПК имеет те же задачи. В статье приведено описание подхода к проектированию специального модуля системы цифрового управления теплицей с возможностью получения прогнозируемых данных об оценке технических элементов объекта. Объект исследования: тепличный объект общего назначения и цифровые данные, получаемые через коммуникационную сеть от цифровых технических элементов. Кратко описана используемая коммуникационная сеть. Предполагается использование технических элементов, имеющих функции накопления и/или передачи измеряемых данных.
Результаты. На первом этапе была исследована сама возможность применения обученных нейросетей для работы с данными элементов от объектов АПК. На втором исследовалась возможность использования аппарата искусственной нейросети на ограниченном наборе данных для получения прогнозных результатов. В описываемом подходе предполагается использование численных методов для моделирования и метод прогноза с помощью аппарат искусственных нейронных сетей для прогноза состояния технических элементов.
Заключение. Модуль, с использованием нейросети, может быть применен в составе управляющего ПО для мониторинга технических элементов и объектов АПК. Используемый способ применения нейросети с простой архитектурой, с упором на результаты моделирования, позволил исследовать применение такого подхода в системе управления теплицей на основе статистики с объекта.
Проблема и цель. В настоящее время в сельском хозяйстве имеется возможность получать большие объемы неструктурированных данных, однако не существует достаточного количества платформ для их накопления, систематизации и обработки. Имеется острая необходимость систематизации баз данных по продаже сельскохозяйственной продукции, запасных частей и расходных материалов сельскохозяйственной техники, оказанию различных услуг и сдаче в аренду техники и оборудования. Цель исследований - оценить возможность применения технологий Big Data для систематизации баз данных по продаже запасных частей и расходных материалов сельскохозяйственной техники.
Методология. В алгоритмах обработки больших данных в последнее время все чаще используют нейронные сети. Нейронная сеть строится из нейронов. Нейроны - это объекты, на вход которых подаются значения xi, x2,.., xn, после чего внутри происходит ряд вычислений и на выходе получается значение y. В машинном обучении используют генетические алгоритмы. Данные алгоритмы основаны на теории эволюции и естественном отборе. В этих алгоритмах сначала вычисляется приспособленность нейронной сети, то есть ее способность выдавать необходимый нам результат, на основании чего происходит размножение нейронных сетей в несколько копий, при этом с каждой из них происходит мутация (т. е. изменение параметров нейронной сети).
Результаты. Использование технологий Big Data может повысить эффективность обработки данных, связанных с изучением снабжения запасными частями сельскохозяйственной техники.
Заключение. Использование технологий Big Data позволяет улучшить качество управления за счет, во-первых, предоставления информации в достаточном объеме, во-вторых, существенного удешевления сбора необходимой информации, а в третьих, упрощения сбора большого количества статистических данных по многим, не связанным между собой хозяйствам, что позволяет производить более качественные научные исследования.
Введение. Современные художники все чаще прибегают к новым способам создания произведений искусства – происходит постоянное внедрение нейросетевых программ и новых методик, что приводит к качественно новым результатам и новому художественному мышлению. В данном случае особо интересен опыт Китая, где на законодательном уровне внедряются разработки искусственного интеллекта в создание художественных работ. Теоретический анализ. Существуют несколько концепций, рассматривающих творчество и авторство в эпоху искусственного интеллекта. Исследователи сходятся на мнении, что сейчас мы находимся в эпохе соавторства с нейросетями, так как они могут привносить новые элементы в изначальный замысел художника. Китайские авторы активно используют ChatGPT, Midjourney и другие нейросети для разработки и усовершенствования своих идей.
Заключение. Методология применения нейросетей обогащает творчество современных художников, но одновременно может стать угрозой для когнитивных способностей будущих авторов.