Рассматривается вопрос об асимптотической устойчивости линейной непрерывнодискретной системы функционально-дифференциальных уравнений с постоянными коэффициентами. Такие системы состоят из двух подсистем: непрерывной и дискретной, и часто называются гибридными. Непрерывная подсистема представляет собой систему дифференциальных уравнений. Особенность рассматриваемой гибридной системы заключается в том, что её непрерывная часть представляет собой систему дифференциальных уравнений с сосредоточенным запаздыванием, в то время как в подавляющем большинстве работ рассматриваются такие гибридные системы, непрерывная часть которых представляет собой систему обыкновенных дифференциальных уравнений. Стандартный для последних подход изучения устойчивости – интегрирование на каждом конечном промежутке и построение матрицы монодромии. Однако этот подход, вообще говоря, неприменим к задаче исследования устойчивости гибридных систем, непрерывная часть которых представляет собой систему дифференциальных уравнений с отклоняющимся аргументом. В настоящей работе для исследования устойчивости гибридных систем применяется метод производящих функций совместно с анализом спектра оператора сдвига по траектории решения гибридной системы. Построение производящей функции для матрицы Коши и для фундаментального решения позволяет свести задачу асимптотической устойчивости гибридной системы к задаче исследования расположения корней некоторой функции в комплексной плоскости. Для этой функции естественно ввести термин «характеристическая функция гибридной системы», что и было сделано. Кроме того, доказано, что для данных гибридных систем асимптотическая устойчивость совпадает с равномерной экспоненциальной устойчивостью. Данный подход совместим с методом D-разбиения, что позволяет применять его для получения новых эффективных коэффициентных признаков асимптотической устойчивости гибридных систем: в частности, для построения области устойчивости. В настоящей статье построен новый простой необходимый признак асимптотической устойчивости гибридной системы, который сводится к проверке двух элементарных числовых неравенств
Изучается система линейных функционально-дифференциальных уравнений с дробной производной и последействием. Исследуется вопрос о представлении решений, доказано существование матрицы Коши как ядра интегрального представления, выведены основные определяющие соотношения для матрицы Коши. Используется известное определение дробной производной Капуто порядка (0,1).α ∈ Исследуемая система включает, кроме производной Капуто, линейный вольтерров оператор общего вида. С помощью оператора дробного интегрирования Римана – Лиувилля исходная система сводится к линейному интегральному уравнению Вольтерра, для которого устанавливаются сходимость ряда Неймана и интегральное представление решения с использованием резольвентного интегрального оператора. Показано, что матрица Коши выражается в явном виде через резольвентное ядро этого оператора. В случае перехода к целому порядку производной полученное определяющее соотношение для матрицы Коши совпадает с известным. Использование матрицы Коши открывает широкие возможности исследования систем с производными дробного порядка в части получения эффективных признаков разрешимости краевых задач, задач управления и описания асимптотического поведения решений подобно тому, как это сделано для широких классов систем с целыми производными. В основе всех построений – использование основных положений теории абстрактных функционально-дифференциальных уравнений, разработанной руководителями Пермского семинара профессорами Н. В. Азбелевым и Л. Ф. Рахматуллиной
Рассматриваются линейные функционально-дифференциальные уравнения, которые могут служить основой для современного моделирования в различных областях науки, техники, экономики, в том числе при исследовании нейронных сетей и машинного обучения. Эти уравнения описывают широкий класс процессов, где скорость изменения некоторой величины зависит не только от значений в текущий момент времени, но и от значений в прошлом и будущем. Целью работы является получение точных условий на параметры уравнения, при выполнении которых уравнение имеет решение при любой суммируемой правой части, что отражает существование моделируемого объекта при разумно большом классе внешних воздействий. Показано, что для установления факта всюду разрешимости функциональнодифференциального уравнения первого порядка достаточно исследовать только три краевых задачи: периодическую краевую задачу, задачу Коши и задачу с краевым условием на правом конце. В терминах значений норм положительной и отрицательной частей функционального оператора получены необходимые и достаточные условия того, что линейное функционально-дифференциальное уравнение первого порядка является всюду разрешимым. Если эти условия на нормы не выполнены, то найдется такой оператор с данными нормами положительной и отрицательной частей, что уравнение не будет иметь решений при некоторых суммируемых правых частях. Разработанные методы исследования опираются на аппарат теории функционально-дифференциальных уравнений и могут быть применены для изучения других классов функциональных уравнений, в частности, для уравнений высших порядков. Полученные результаты могут быть использованы для анализа и моделирования различных динамических систем, где присутствуют запаздывания и (или) опережения. Эти запаздывания и опережения могут описываться наиболее общими функциональными операторами, включающими и положительную, и отрицательную части, что соответствует рассмотрению систем и с положительной, и с отрицательной обратной связью. Это позволяет более точно описывать и прогнозировать поведение таких систем.
В работе рассматривается класс линейных автономных дифференциальных уравнений нейтрального типа. Изучаемое уравнение, с одной стороны, возникает в различных прикладных задачах, таких как динамика популяции клеток, движение плоских упругих плит с учетом трения, исследование дефектов с помощью ультразвука. С другой стороны, это уравнение обладает большим разнообразием асимптотических свойств решений и поэтому интересно также с теоретической точки зрения, что подтверждается значительным количеством чисто теоретических исследований. Исследуемое уравнение являет собой удачный пример объекта, который достаточно прост для того, чтобы удалось получить эффективные признаки устойчивости, и в то же время достаточно сложен, чтобы в нем проявилось все разнообразие асимптотических свойств решений автономных уравнений нейтрального типа. Исследование устойчивости рассматриваемого уравнения сводится к изучению асимптотических свойств его фундаментального решения и функции Коши. Известен критерий экспоненциальной устойчивости изучаемого уравнения и построена его область устойчивости в пространстве коэффициентов. В настоящей работе исследуется положительность фундаментального решения и функции Коши данного уравнения, а также устанавливаются двусторонние экспоненциальные оценки указанных функций. Для этого известная лемма о дифференциальном неравенстве обобщается на линейное автономное дифференциальное уравнение нейтрального типа. Далее доказывается, что если рассматриваемое уравнение экспоненциально устойчиво, а его характеристическая функция имеет хотя бы один вещественный корень, то его фундаментальное решение и функция Коши положительны на положительной полуоси. Этому условию придается геометрический вид – описывается соответствующая область в пространстве параметров уравнения. На основе положительности фундаментального решения и функции Коши строятся их двусторонние экспоненциальные оценки. Показатели экспоненты и коэффициенты в полученных оценках фундаментального решения и функции Коши являются точными. Эффективность установленных в статье результатов иллюстрируется примером.
Исследуется устойчивость линейного автономного разностного уравнения с двумя комплексными коэффициентами и различными запаздываниями. Отправной точкой исследования является теорема Шура – Кона о расположении корней характеристического уравнения на комплексной плоскости относительно единичного круга. Для построения области экспоненциальной устойчивости исследуемого уравнения в пространстве параметров используется метод D-разбиений, состоящий в построении таких поверхностей в фазовом пространстве, что при переходе точки пространства через эти поверхности изменяется число корней соответствующего точке характеристического уравнения, находящихся вне единичного круга комплексной плоскости. Область, которой соответствует нулевое число таких корней, является областью устойчивости уравнения. Эта схема реализована для указанного разностного уравнения: найдены геометрические критерии устойчивости и описаны области экспоненциальной устойчивости в четырехмерном пространстве коэффициентов. Отдельно изучена равномерная устойчивость, областью которой является область экспоненциальной устойчивости, дополненная частью границы. Для точного описания области равномерной устойчивости потребовалось описание «кривой кратности», все точки которой соответствуют кратным корням характеристического уравнения. Полученные результаты могут быть применены к исследованию процессов в физике, технике, экономике, биологии, при моделировании которых используются дискретные модели в виде разностных уравнений
19 марта 2024 г. ушла из жизни Лина Фазыловна Рахматуллина, известный математик, основатель современной теории линейных функционально-дифференциальных уравнений, доктор физико-математических наук, профессор, заслуженный работник высшей школы Российской Федерации
Исследуется проблема разницы между требованиями к проекту в отношении сроков окончания, а именно повышение эффективности принятия решений в проектном управлении относительно вероятных сроков окончания проекта. На основе математических моделей, без специальных допущений относительно природы проекта показано, что задачи минимизации среднего значения длительности проекта, его наиболее вероятной продолжительности, медианного срока выполнения, а также такого срока, который гарантирует выполнение проекта с заданной вероятностью, не сводимы друг к другу и требуют различных управленческих решений. Сделан вывод, что популярные в проектном управлении математические модели, которые сводят неопределенность в сроках к единственному параметру, неадекватно отражают эту разницу в требованиях и могут быть усовершенствованы, чтобы их практические следствия были прозрачнее для проектных менеджеров, а также, что при принятии решений в рамках управления реальными проектами следует конкретизировать требования заказчика и однозначно определять, какой из сроков для него является ключевым. В результате исследования доказано, что в рамках любого достаточно сложного проекта всегда существуют такие управленческие решения, которые будут оправданы с точки зрения минимизации среднего срока, но приведут к увеличению медианного или наиболее вероятного срока завершения.
Рассматривается сравнительный анализ методов построения виртуальных анализаторов с использованием робастной регрессии, гребневой регрессии, метода ортогональных проекций на скрытые структуры на основе ядра (англ. K-OPLS), метода чередующихся условных математических ожиданий (англ. ACE) и нейросетей прямого распространения. Данные модели в составе виртуальных анализаторов предназначены для оценки значений точек фракционного состава керосиновой фракции - продукта колонны фракционирования - в режиме реального времени. В ходе построения моделей рассмотрен вопрос усреднения значений входных переменных за определенный промежуток времени для привязки к значениям выходных переменных. В отличие от существующих работ, в данном исследовании обучение и тестирование моделей осуществляется на ограниченных по значениям выходной переменной сегментах данных, т. е. в условиях пропусков данных в обучающей выборки. Показано влияние ширины интервала усреднения значений входной переменной на точность оценки получаемых моделей. Также показано, что наименьшее значение средней абсолютной ошибки при оценке точек фракционного состава обеспечивают модели на основе нейронных сетей и K-OPLS при различных вариантах обучения и тестирования.
Рассматривается актуальная проблема поиска закономерностей в больших объемах статистических данных. Инструментом анализа данных выступает регрессионный анализ. При построении регрессионных моделей исследователи зачастую стремятся только к их высокому качеству аппроксимации. Но, как отмечено в современных научных работах, одной такой метрики недостаточно. Поэтому сегодня активно развивается интерпретируемое машинное обучение. Ранее автором было предложено определение вполне интерпретируемой линейной регрессии, а задача ее построения была формализована в виде задачи частично-булевого линейного программирования. Исследования выявили высокую эффективность разработанного математического аппарата при решении задач обработки больших данных. Поэтому было принято решение расширить предложенную технологию для построения квазилинейных регрессий. В статье дано определение вполне интерпретируемой квазилинейной регрессии, включающее 6 условий. Разработан алгоритм интерпретации влияния в оцененной квазилинейной регрессии монотонно преобразованных объясняющих переменных на зависимую переменную. Задача построения вполне интерпретируемой квазилинейной регрессии формализована в виде задачи частично-булевого линейного программирования. Показано, как в этой задаче выбирать допустимые границы параметра M. Для демонстрации работоспособности предложенного математического аппарата решена задача моделирования прочности бетона на сжатие по данным, содержащим более 1000 наблюдений. Для этого использовалась программа «ВИнтер-2». В построенную модель вошли следующие преобразованные переменные: цементно-водное отношение, шлак доменной печи, пластификатор и возраст бетона. Построенная регрессия оказалась лучше по качеству аппроксимации и проще по структуре существующей модели. Дана интерпретация построенной квазилинейной регрессии. Влияние объясняющих переменных на прочность бетона в ней согласуется как с содержательным смыслом задачи, так и с другими существующими математическими моделями. Предложенная в статье технология построения вполне интерпретируемых квазилинейных регрессий обладает высоким потенциалом для решения задач обработки больших данных в различных предметных областях.
Исследована устойчивость по начальной функции линейного автономного функционально-дифференциального уравнения нейтрального типа. Анализируется устойчивость по Ляпунову, асимптотическая и сильная асимптотическая, а также экспоненциальная устойчивость уравнения и их взаимосвязь. Определения всех типов устойчивости формулируются в терминах функции Коши - функции, позволяющей в явном виде записать общее решение уравнения. Основное внимание уделено исследованию устойчивости по начальной функции из пространств суммируемых функций. Используется известное представление решения функционально-дифференциального уравнения с помощью интегрального оператора, ядром которого является функция Коши. Вопросы устойчивости исследуются для уравнения с кратным запаздыванием при производной и распределенным запаздыванием при неизвестной функции. Показано, что для такого уравнения сохраняются все свойства, ранее доказанные для уравнения с кратным запаздыванием при неизвестной функции. А именно показано, что сильная асимптотическая устойчивость рассматриваемого уравнения с начальной функцией из пространства L 1 эквивалента экспоненциальной оценки функции Коши, кроме того, из любого из этих свойств следует экспоненциальная устойчивость по начальной функции в любом из пространств L p при 1≤p≤∞. При этом, как и для уравнения с кратными запаздываниями, сильная асимптотическая устойчивость в пространстве L p для некоторого p>1 может не быть равносильной экспоненциальной устойчивости.
Одной из важнейших в экономике, учебном процессе и других сферах выступает задача рационального распределения ограниченных ресурсов. Актуальность решения данной проблемы определяется ростом стоимости ресурсов и увеличением их вклада в конечный продукт. В учебном процессе имеются задачи, требующие распределения ресурсов для их осуществления. Такими задачами являются, например, учебные задания, проекты, работы. В качестве ресурсов могут выступать часы учебных занятий, количество мероприятий, информационное обеспечение. Целью статьи является разработка метода оптимального распределения ресурсов в учебном процессе в условиях неопределенности. Для достижения цели в качестве показателя эффективности выбрана взвешенная сумма вероятностей выполнения всех заданий данной работы; заданы ограничения, исходя из располагаемых ресурсов. Разработан новый аналитический метод решения задачи распределения ресурсов. Метод основан на использовании неопределенных множителей Лагранжа. Проводится исследование и обоснование необходимого и достаточного условий существования экстремума целевой функции. Для учета нечеткости информации исходные данные задачи задаются в виде нечетких чисел треугольного вида. В разработанном методе выделяются три оптимизационных задачи нелинейного программирования для наилучших, средних и наихудших условий. Рассматривается решение задачи для распределения однородных и неоднородных ресурсов. Результатом исследования является разработанный новый способ распределения однородных и неоднородных ресурсов в условиях неопределенности. Предложенный в статье метод может найти применение не только в учебном процессе, но и в других областях, например, в экономике, сельском хозяйстве.
Предлагается простой дискретный алгоритм, моделирующий работу мультиполярного ассоциативного нейрона с синапсами, и простая приближенная математическая модель синапса. Коэффициенты моделей находятся путем решения задачи идентификации по результатам измерений входов и выходов блоков, из которых состоит структурная схема нейрона и синапса. Полученные математические модели частично отражают основные свойства реальных нейронов и синапсов. Они могут использоваться для создания искусственных нейронных сетей и систем искусственного интеллекта при математическом моделировании работы мозга человека.