О ПОСТРОЕНИИ ПРОСТОЙ ПРИБЛИЖЕННОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ РЕАЛЬНОГО НЕЙРОНА (2025)
Предлагается простой дискретный алгоритм, моделирующий работу мультиполярного ассоциативного нейрона с синапсами, и простая приближенная математическая модель синапса. Коэффициенты моделей находятся путем решения задачи идентификации по результатам измерений входов и выходов блоков, из которых состоит структурная схема нейрона и синапса. Полученные математические модели частично отражают основные свойства реальных нейронов и синапсов. Они могут использоваться для создания искусственных нейронных сетей и систем искусственного интеллекта при математическом моделировании работы мозга человека.
Выпуск:
№ 1 (2025)