Рассматривается численное моделирование газодинамических процессов, сопровождающих формирование и распространение вихревых колец, получаемых при помощи поршневого генератора. Обсуждается влияние характеристик вихревого кольца на перенос пассивной примеси. Для численных расчетов применяются нестационарные уравнения Навье—Стокса, для дисукретизации которых применяется метод конечных объемов. Результаты численного моделирования позволяют получить геометрические и динамические характеристики вихревого кольца, которые соответствуют автомодельному теории вихревого кольца и экспериментальным данным. Помимо традиционных подходов к визуализации вихревых течений, основанных на построении линий уровня различных характеристик потока, для визуализации вихревых структур применяются инварианты тензора градиента скорости и метод показателей Ляпунова на конечном промежутке времени.
В рамках статистического подхода, основанного на кинетическом уравнении для функции плотности вероятности распределения скорости и температуры частиц, построена континуальная модель, описывающая псевдотурбулентные течения дисперсной фазы. Введение функции плотности вероятности позволяет получить статистическое описание ансамбля частиц вместо динамического описания отдельных частиц на основе уравнений движения и теплопереноса типа Ланжевена. На основе уравнений для первых и вторых моментов дисперсной фазы проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны с облаком частиц. Основные уравнения имеют гиперболический тип, записываются в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Обсуждается влияние двумерных эффектов на формирование ударно-волновой структуры течения и пространственно-временны´е зависимости концентрации частиц и других параметров потока.
На основе модели взаимопроникающих континуумов проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны со слоем инертных частиц. Каждая фаза описывается набором уравнений, выражающих законы сохранения массы, импульса и энергии. Межфазное взаимодействие учитывается при помощи источниковых членов в уравнениях изменения количества движения и энергии. Основные уравнения для газовой и дисперсной фаз имеют гиперболический тип, допускают запись в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Для дискретизации уравнений по времени применяется метод Рунге-Кутты 3-го порядка. Построенная модель позволяет рассчитывать широкий спектр режимов течения газовзвеси, возникающих при изменении объемной концентрации дисперсной фазы. Обсуждаются вопросы, связанные с замыканием математической модели, а также детали реализации численной модели. Приводятся ударно-волновая структура течения и пространственно-временные зависимости концентрации частиц и других параметров потока.