EISSN 1726-3522
Язык: ru

Т. 21 № 3 (2020)

Методы и алгоритмы вычислительной математики и их приложения. Параллельные программные средства и технологии

Статьи в выпуске: 11

ОБ ОДНОМ ИТЕРАЦИОННОМ МЕТОДЕ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА КЛАСТЕРНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ (2020)
Авторы: Соколинский Леонид Борисович, Соколинская Ирина Михайловна

Статья посвящена исследованию нового метода решения сверхбольших задач линейного программирования. Указанный метод получил название “апекс-метод”. Апекс-метод работает по схеме предиктор-корректор. На фазе предиктор находится точка, лежащая на границе n-мерного многогранника, задающего допустимую область задачи линейного программирования. На фазе корректор организуется итерационный процесс, в результате которого строится последовательность точек, сходящаяся к точному решению задачи линейного программирования. В статье дается формальное описание апекс-метода и приводятся сведения о его параллельной реализации на языке C++ с использованием библиотеки MPI. Приводятся результаты масштабных вычислительных экспериментов на кластерной вычислительной системе по исследованию масштабируемости апекс-метода.

Сохранить в закладках
РЕДУКЦИЯ ЦИФРОВОГО ИЗОБРАЖЕНИЯ ДЛЯ АНАЛИЗА ТОПОЛОГИЧЕСКИХ ИЗМЕНЕНИЙ ПОРОВОГО ПРОСТРАНСТВА ПОРОДЫ В ПРОЦЕССЕ ХИМИЧЕСКОГО РАСТВОРЕНИЯ (2020)
Авторы: Прохоров Дмитрий Игоревич, Базайкин Ярослав Владимирович, Лисица Вадим Викторович

В работе предложен алгоритм редукции трехмерных цифровых изображений для ускорения вычисления персистентных диаграмм, характеризующих изменения в топологии порового пространства образцов горной породы. Воксели для удаления выбираются исходя из структуры своей окрестности, что позволяет редуцировать изображение за линейное время. Показано, что эффективность алгоритма существенно зависит от сложности устройства порового пространства и размеров шагов фильтрации.

Сохранить в закладках
ЧИСЛЕННАЯ ОЦЕНКА УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ГОРНЫХ ПОРОД ПО ИХ ЦИФРОВЫМ ИЗОБРАЖЕНИЯМ С ИСПОЛЬЗОВАНИЕМ ГРАФИЧЕСКИХ СО-ПРОЦЕССОРОВ (2020)
Авторы: Хачкова Татьяна Станиславовна, Лисица Вадим Викторович, Решетова Галина Витальевна, Чеверда Владимир Альбертович

Хачкова Татьяна Станиславовна

Сохранить в закладках
РАЗРАБОТКА ПРОТОТИПА ВЫСОКОПРОИЗВОДИТЕЛЬНОГО ГРАФОВОГО ФРЕЙМВОРКА ДЛЯ ВЕКТОРНОЙ АРХИТЕКТУРЫ NEC SX-AURORA TSUBASA (2020)
Авторы: Афанасьев И. В.

В данной статье описан подход к созданию прототипа графового фреймворка VGL (Vector Graph Library), нацеленного на эффективную реализацию графовых алгоритмов для современной векторной архитектуры NEC SX–Aurora TSUBASA. Современные векторные системы позволяют значительно ускорять приложения, интенсивно использующие подсистему памяти, подклассом которых являются графовые алгоритмы. Однако подходы к эффективной реализации графовых алгоритмов для векторных систем на сегодняшний день исследованы крайне слабо: вследствие сильно нерегулярной структуры графов реального мира, эффективно задействовать векторные особенности целевых платформ затруднительно. В работе показано, что разработанные на основе предложенного фреймворка VGL реализации графовых алгоритмов не уступают в производительности оптимизированным “вручную” аналогам за счет инкапсуляции большого числа оптимизаций графовых алгоритмов, характерных для векторных систем. Вместе с этим предложенный фреймворк позволяет значительно упростить процесс разработки графовых алгоритмов для векторных систем, на порядок сокращая объем кода реализуемых алгоритмов и скрывая от пользователя особенности программирования систем данного класса.

Сохранить в закладках
О ТЕОРЕМЕ КЕНИГА ДЛЯ ЦЕЛЫХ ФУНКЦИЙ КОНЕЧНОГО ПОРЯДКА (2020)
Авторы: Громов Анатолий Николаевич

Показано, что теорема Кенига о нулях аналитической функции, примененная к логарифмической производной целой функции конечного порядка, приводит к алгоритму отыскания нулей, для которого областями сходимости являются многоугольники Вороного искомых нулей. Так как диаграмма Вороного последовательности нулей составляет множество меры нуль, то алгоритм имеет глобальную сходимость. Дана оценка скорости сходимости. Для итераций высших порядков, которые строятся с помощью теоремы Кенига, рассмотрено влияние кратности корня на область сходимости и приводится оценка скорости сходимости.

Сохранить в закладках
ОБ ОЦЕНКЕ ПОГРЕШНОСТИ ПРИБЛИЖЕННОГО РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ОПРЕДЕЛЕННОГО С ПОМОЩЬЮ РЯДОВ ЧЕБЫШЁВА (2020)
Авторы: Арушанян Олег Багратович, Залеткин Сергей Федорович

Рассматривается приближенный метод решения задачи Коши для нелинейных обыкновенных дифференциальных уравнений первого порядка, основанный на применении смещенных рядов Чебышёва и квадратурной формулы Маркова. Приведены способы оценки погрешности приближенного решения, выраженного в виде частичной суммы ряда некоторого порядка. Погрешность оценивается с помощью второго приближенного решения, вычисленного специальным образом и представленного частичной суммой ряда более высокого порядка. На основе предложенных способов оценки погрешности построен алгоритм автоматического разбиения промежутка интегрирования на элементарные сегменты, делающие возможным вычисление приближенного решения с наперед заданной точностью. Работа метода проиллюстрирована примерами, в том числе примером из небесной механики.

Сохранить в закладках
ЧИСЛЕННАЯ ОЦЕНКА ВЛИЯНИЯ ШЕРОХОВАТЫХ ГРАНИЦ НА УПРУГИЕ ПАРАМЕТРЫ СЛОИСТОЙ СРЕДЫ (2020)
Авторы: Хачкова Татьяна Станиславовна, Лисица Вадим Викторович, Колюхин Дмитрий Романович, Решетова Галина Витальевна

Представлено численное исследование влияния шероховатости границраздела в слоистой среде на эффективные упругие свойства тонкослоистой среды. Предложен алгоритм построения статистически эквивалентных моделей слоистых сред двух различных типов. Первый тип включает в себя модели с постоянными упругими параметрами, но с шероховатой границей раздела. Второй тип состоит из моделей с плоскими границами раздела, но с параметрами, задаваемыми случайными величинами. При этом распределение упругих параметров в моделях второго типа (средние значения и ковариационная матрица) однозначно определяется шероховатостью границ раздела (длина корреляции и стандартное отклонение) в моделях первого типа.

Сохранить в закладках
ВЛИЯНИЕ ДВУМЕРНЫХ ЭФФЕКТОВ НА ВЗАИМОДЕЙСТВИЕ УДАРНОЙ ВОЛНЫ С ОБЛАКОМ ЧАСТИЦ (2020)
Авторы: Волков Константин Николаевич, ЕМЕЛЬЯНОВ ВЛАДИСЛАВ НИКОЛАЕВИЧ, Карпенко Антон Геннадьевич, Тетерина Ирина Владимировна

В рамках статистического подхода, основанного на кинетическом уравнении для функции плотности вероятности распределения скорости и температуры частиц, построена континуальная модель, описывающая псевдотурбулентные течения дисперсной фазы. Введение функции плотности вероятности позволяет получить статистическое описание ансамбля частиц вместо динамического описания отдельных частиц на основе уравнений движения и теплопереноса типа Ланжевена. На основе уравнений для первых и вторых моментов дисперсной фазы проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны с облаком частиц. Основные уравнения имеют гиперболический тип, записываются в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Обсуждается влияние двумерных эффектов на формирование ударно-волновой структуры течения и пространственно-временны´е зависимости концентрации частиц и других параметров потока.

Сохранить в закладках
ОБ ОДНОЙ НЕЛИНЕЙНОЙ ПАРАБОЛИЧЕСКОЙ ЗАДАЧЕ С ГРАНИЧНЫМ УПРАВЛЕНИЕМ И О ЕЕ ПРИЛОЖЕНИЯХ (2020)
Авторы: Гольдман Наталия Львовна

Рассматривается проблема оптимального управления системой, состоящей из краевой задачи первого рода для квазилинейного параболического уравнения с неизвестным коэффициентом, а также из уравнения изменения по времени этого коэффициента. Обоснованы две постановки вариационных задач с финальным наблюдением, в которых управлением является граничный режим на одной из границ области. Доказаны свойства непрерывности и дифференцируемости соответствующих минимизируемых функционалов. Дано явное представление для дифференциалов через решение сопряженных задач. Установлен вид этих сопряженных задач, доказана их однозначная разрешимость в классе гладких функций. Проведенное исследование связано с моделированием и управлением физико-химическими процессами с изменяющимися внутренними свойствами материалов.

Сохранить в закладках
ВЫЧИСЛЕНИЕ РЕСУРСОВ И АНАЛИЗ ЭФФЕКТИВНОСТИ СТРАТЕГИЙ В ИГРОВОЙ МОДЕЛИ ПРОТИВОБОРСТВА (2020)
Авторы: Мусаева Милана Абуевна

Сформулирована игровая модель противоборства в виде модели “нападение и защита”, указаны способы вычисления ресурсов сторон, анализированы эффективность их стратегий и установлены условия существования оптимального решения рассматриваемых задач.

Сохранить в закладках
ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧИ ДИНАМИКИ ИЗМЕНЕНИЯ РЕЛЬЕФА ДНА В ПРИБРЕЖНЫХ СИСТЕМАХ (2020)
Авторы: Чистяков Александр Евгеньевич, Проценко Елена Анатольевна, Проценко Софья Владимировна, Сидорякина Валентина Владимировна, Сухинов Александр Иванович

Предложена нестационарная 2D-модель транспорта донных отложений в прибрежной зоне мелководных водоемов, дополненная уравнениями Навье–Стокса, неразрывности и состояния водной среды. Дискретная модель транспорта наносов получена в результате аппроксимации соответствующей линеаризованной непрерывной модели. Поскольку задачи прогнозирования транспорта наносов требуют решения в реальном или ускоренном масштабах времени, на сетках, включающих 106–109 узлов, необходима разработка параллельных алгоритмов задач гидродинамики на системах с массовым параллелизмом. Представлены результаты работы созданного эффективного программного обеспечения для выполнения гидродинамических вычислительных экспериментов, позволяющие проводить численное моделирование деформации дна в прибрежной зоне водоема. Приведены результаты численных экспериментов.

Сохранить в закладках