ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Архив статей журнала
Высокотемпературные эффекты оказывают существенное влияние на характеристики летательных аппаратов, движущихся с гиперзвуковой скоростью. В связи со сложностью постановки физического эксперимента, методы математического моделирования играют важную роль для нахождения характеристик гиперзвуковых летательных аппаратов. Обсуждается построение и реализация математической модели, предназначенной для численного моделирования гиперзвукового обтекания тела с учетом неравновесных физико-химических процессов в высокотемпературном воздухе. Математическая модель включает в себя уравнения газовой динамики, уравнения модели турбулентности и уравнения химической кинетики. Проводится численное моделирование сверх- и гиперзвукового обтекания полусферы потоком воздуха с учетом высокотемпературных эффектов. Приводится критический обзор различных моделей, которые применяются для нахождения расстояния от фронта ударной волны до поверхности сферы. Результаты расчетов, полученные с использованием разработанного численного метода, сравниваются с данными физического эксперимента и расчетными данными, имеющимися в литературе, в широком диапазоне чисел Маха набегающего потока. Разработанная модель и результаты расчетов имеют значение для моделирования обтекания тел сложной конфигурации и проектирования высокоскоростных летательных аппаратов.
Проводится численное моделирование обтекания гиперзвукового летательного аппарата с использованием модели высокотемпературного воздуха и гибридной архитектуры на основе высокопроизводительных графических процессорных устройств. Расчеты проводятся на основе уравнений Эйлера, для дискретизации которых применяется метод конечных объемов на неструктурированных сетках. Приводятся результаты исследования эффективности расчета гиперзвуковых течений газа на графических процессорах. Обсуждается время счета, достигнутое при использовании моделей совершенного и реального газа.
В рамках статистического подхода, основанного на кинетическом уравнении для функции плотности вероятности распределения скорости и температуры частиц, построена континуальная модель, описывающая псевдотурбулентные течения дисперсной фазы. Введение функции плотности вероятности позволяет получить статистическое описание ансамбля частиц вместо динамического описания отдельных частиц на основе уравнений движения и теплопереноса типа Ланжевена. На основе уравнений для первых и вторых моментов дисперсной фазы проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны с облаком частиц. Основные уравнения имеют гиперболический тип, записываются в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Обсуждается влияние двумерных эффектов на формирование ударно-волновой структуры течения и пространственно-временны´е зависимости концентрации частиц и других параметров потока.
На основе модели взаимопроникающих континуумов проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны со слоем инертных частиц. Каждая фаза описывается набором уравнений, выражающих законы сохранения массы, импульса и энергии. Межфазное взаимодействие учитывается при помощи источниковых членов в уравнениях изменения количества движения и энергии. Основные уравнения для газовой и дисперсной фаз имеют гиперболический тип, допускают запись в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Для дискретизации уравнений по времени применяется метод Рунге-Кутты 3-го порядка. Построенная модель позволяет рассчитывать широкий спектр режимов течения газовзвеси, возникающих при изменении объемной концентрации дисперсной фазы. Обсуждаются вопросы, связанные с замыканием математической модели, а также детали реализации численной модели. Приводятся ударно-волновая структура течения и пространственно-временные зависимости концентрации частиц и других параметров потока.