- D. G. Fletcher, “Fundamentals of Hypersonic Flow - Aerothermodynamics”, in Critical Technologies for Hypersonic Vehicle Development (Von Karman Inst. for Fluid Dynamics, Rhode-St-Genese, 2005), pp. 3-1-3-47.
- J. D. Anderson, Hypersonic and High Temperature Gas Dynamics (AIAA Press, Reston, 2006).
- S. T. Surzhikov, Numerical Study of Aerothermodynamics of Hypersonic Flow over Blunt Bodies by the Example of Experimental Data Analysis (Inst. for Problems in Mechanics, Moscow, 2011) [in Russian].
- V. A. Bashkin and I. V. Egorov, Numerical Simulation of Viscous Perfect Gas Dynamics (Fizmatlit, Moscow, 2012; Begell House, New York, 2016).
- M. Holt and G. H. Hoffman, Calculation of Hypersonic Flow Past Sphere and Ellipsoids, Report No. 61-209-1903 (American Rocket Society, New York, 1961).
- R. N. Cox and L. F. Crabtree, Elements of Hypersonic Aerodynamics (Academic Press, New York, 1965).
- A. P. Krasil’schikov and L. P. Gur’yashkin, Experimental Studies of Rotating Bodies in Hypersonic Flows (Fizmatlit, Moscow, 2007) [in Russian].
- N. A. Kharchenko and M. A. Kotov, “Analysis of the High Speed Gas Flow over a Sphere in the Range of Mach Numbers 2-12”, J. Phys.: Conf. Ser. 1009 (2018). DOI: 10.1088/1742-6596/1009/1/012007
- H. Olivier, “A Theoretical Model for the Shock Stand-off Distance in Frozen and Equilibrium Flows”, J. Fluid Mech. 413 (01), 345-353 (2000). DOI: 10.1017/S0022112000008703
-
Y. M. Hu, H. M. Huang, and J. Guo, "Shock Wave Standoff Distance of Near Space Hypersonic Vehicles", Sci. China. Technol. Sci. 60 (8), 1123-1131 (2017). DOI: 10.1007/s11431-016-9055-5 EDN: FLNEBR
-
W. L. Hankey, Re-Entry Aerodynamics (AIAA Press, Washington, 1988). https://arc.aiaa.org/doi/book/10.2514/4.862342 Cited August 28, 2022. DOI: 10.2514/4.862342CitedAugust28
-
S. T. Surzhikov, "Numerical Simulation of Heat Radiation Generated by Entering Space Vehicle", AIAA Paper 2004-2379 (2004). DOI: 10.2514/6.2004-2379
-
J. J. Quirk, "A Contribution to the Great Riemann Solver Debate", Int. J. Numer. Methods Fluids 18 (6), 555-574 (1994). DOI: 10.1002/fld.1650180603 EDN: XYMYXS
-
R. K. Lobb, "Experimental Measurement of Shock Detachment Distance on Spheres Fired in Air at Hypervelocities", in High Temperature Aspects of Hypersonic Flow (Pergamon Press, Oxford 1964), pp. 519-527. DOI: 10.1016/B978-1-4831-9828-6.50031-X
-
T. J. McIntyre, A. I. Bishop, H. Rubinsztein-Dunlop, and P. Gnoffo, "Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder", AIAA J. 41 (11), 2157-2161 (2003). DOI: 10.2514/2.6833
-
H. G. Hornung, J. M. Schramm, and K. Hannemann, "Hypersonic Flow over Spherically Blunted Cone Capsules for Atmospheric Entry. Part 1. The Sharp Cone and the Sphere", J. Fluid Mech. 871, 1097-1116 (2019). DOI: 10.1017/jfm.2019.342
-
G. F. Widhoppe and K. J. Victoria, "On the Solution of the Unsteady Navier-Stokes Equations Including Multicomponent Finite Rate Chemistry", Comput. Fluids 1 (2), 159-184 (1973). DOI: 10.1016/0045-7930(73)90016-9
-
G. F. Widhopf and J. C. T. Wang, "A TVD Finite-Volume Technique for Nonequilibrium Chemically Reacting Flows", AIAA Paper 88-2711 (1988). DOI: 10.2514/6.1988-2711
-
M. E. Olsen, Y. Liu, M. Vinokur, and T. Olsen, "Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW", AIAA Paper 2004-1273 (2004). DOI: 10.2514/6.2004-1273
-
S. Chen, Y. Hu, and Q. Sun, "Study of the Coupling between Real Gas Effects and Rarefied Effects on Hypersonic Aerodynamics", AIP Conf. Proc. 1501 (1), 1515-1521 (2012). DOI: 10.1063/1.4769718
-
K. N. Volkov, V. N. Emelyanov, and A. G. Karpenko, "Numerical Simulation of Gas Dynamic and Physical-Chemical Processes in Hypersonic Flows past Bodies", Vychisl. Metody Program. 18 (4), 387-405 (2017). DOI: 10.26089/NumMet.v18r433 EDN: YTCZBR
-
V. Emelyanov, A. Karpenko, and K. Volkov, "Simulation of Hypersonic Flows with Equilibrium Chemical Reactions on Graphics Processor Units", Acta Astronaut. 163 (Part A), 259-271 (2019). DOI: 10.1016/j.actaastro.2019.01.010
-
A. N. Kraiko and V. E. Makarov, "Explicit Analytic Formulas Defining the Equilibrium Composition and Thermodynamic Functions of Air for Temperatures from 200 to 20000 K", Teplofiz. Vys. Temp. 34 (2), 208-219 (1996) [High Temp. 34 (2), 202-213 (1996)]. EDN: LDPAKP
-
M. M. Golomazov, "Investigation Chemical Processes for Hypersonic Flow of Carbon Dioxide around Blunt Bodies", Physical-Chemical Kinetics in Gas Dynamics. No. 2012-10-18-001. (2012). http://chemphys.edu.ru/issues/2012-13-2/articles/308/ Cited August 28, 2022.
-
Yu. D. Shevelev, N. G. Syzranova, E. V. Kustova, and E. A. Nagnibeda, "Numerical Simulation of Hypersonic Flows around Space Vehicles Descending in the Martian Atmosphere", Mat. Model. 22 (9), 23-50 (2010) [Math. Models Comput. Simul. 3 (2), 205-224 (2011)]. DOI: 10.1134/S2070048211020104 EDN: RXPLNZ
-
T. GallouHet, J.-M. Hérard, and N. Seguin, "Some Recent Finite Volume Schemes to Compute Euler Equations Using Real Gas EOS", Int. J. Numer. Methods Fluids 39 (12), 1073-1138 (2002). DOI: 10.1002/fld.346
-
C. J. Roy and F. G. Blottner, "Review and Assessment of Turbulence Models for Hypersonic Flows", Prog. Aerosp. Sci. 42 (7-8), 469-530 (2006). DOI: 10.1016/j.paerosci.2006.12.002 EDN: MDZDTR
-
Yu. Dobrov, V. Gimadiev, A. Karpenko, and K. Volkov, "Numerical Simulation of Hypersonic Flow with Non-equilibrium Chemical Reactions around Sphere", Acta Astronaut. 194, 468-479 (2022). DOI: 10.1016/j.actaastro.2021.10.008 EDN: YWZADH
-
C. Park, "Review of Chemical-Kinetic Problems of Future NASA Missions. Part I. Earth Entries", J. Thermophys. Heat Transf. 7 (3), 385-398 (1993). DOI: 10.2514/3.431
-
R. N. Gupta, J. M. Yos, and R. A. Thompson, A Review of Reaction Rates and Thermodynamic Transport Properties for an 11-Species Air Model for Chemical and Thermal Non-equilibrium Calculations to 30, 000 K NASA Report No. TM101528 (1989). https://ntrs.nasa.gov/citations/19900017748 Cited August 28, 2022.
-
C. Park, R. L. Jaffe, and H. Partridge, "Chemical-Kinetic Parameters of Hyperbolic Earth Entry", J. Thermophys. Heat Transf. 15 (1), 76-90 (2001). DOI: 10.2514/2.6582
-
A. M. Starik, N. S. Titova, and I. V. Arsentiev, "Comprehensive Analysis of the Effect of Atomic and Molecular Metastable State Excitation on Air Plasma Composition behind Strong Shock Waves", Plasma Sources Sci. Technol. 19 (1) (2009). DOI: 10.1088/0963-0252/19/1/015007 EDN: MXJTEH
-
J. R. Edwards and M.-S. Liou, "Low-Diffusion Flux-Splitting Methods for Flows at all Speeds", AIAA J. 36 (9), 1610-1617 (1998). DOI: 10.2514/2.587
-
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009). DOI: 10.1007/b79761 EDN: SOSSLP
-
F. Qu, J. Chen, D. Sun, et al., "A Grid Strategy for Predicting the Space Plane's Hypersonic Aerodynamic Heating Loads", Aerosp. Sci. Technol. 86, 659-670 (2019). DOI: 10.1016/j.ast.2019.01.049 EDN: BCKRSM
-
V. M. Kotov, E. N. Lychkin, A. G. Reshetin, and A. N. Schelkonogov, "An Approximate Method of Aerodynamic Calculation of Complex Shape Bodies in a Transition Region", in Rarefied Gas Dynamics (Plenum Press, New York, 1985), Vol. 1, pp. 487-494.
-
G. F. Widhopf and R. Hall, "Transitional and Turbulent Heat-Transfer Measurements on Yawed Blunt Conical Nosetip", AIAA J. 10 (10), 1318-1325 (1972). DOI: 10.2514/3.50376
-
J. A. Fay and F. R. Riddell, "Theory of Stagnation Point Heat Transfer in Dissociated Air", J. Aeronaut. Sci. 25 (2), 73-85 (1958). DOI: 10.2514/8.7517
-
N. Belouaggadia, H. Olivier, and R. Brun, "Numerical and Theoretical Study of the Shock Stand-off Distance in Non-equilibrium Flows", J. Fluid Mech. 607, 167-197 (2008). DOI: 10.1017/S0022112008001973
-
C.-Y. Wen and H. G. Hornung, "Non-equilibrium Dissociating Flow over Spheres", J. Fluid Mech. 299, 389-405 (1995). DOI: 10.1017/S0022112095003545
-
J. Martel, B. Jolly, and W. Lawrence, "Shock Standoff and Shape Predictions with Validation for Flat Face Cylinder", AIAA Paper 2015-0523 (2015). DOI: 10.2514/6.2015-0523
-
S. Askari, "An Analytical Approach for Stand-off Distance of Detached Shock Waves", Aerosp. Sci. Technol. 28 (1), 384-390 (2013). DOI: 10.1016/j.ast.2012.12.004
-
Y. Hu, H. Huang, and Z. Zhang, "New Formulas for Standoff Distance in Front of Spacecraft in Hypersonic Flow", J. Spacecr. Rockets 53 (5), 993-997 (2016). DOI: 10.2514/1.A33642