ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Архив статей журнала
Разработан алгоритм высокоточного численного решения эллиптического уравнения второго порядка при наличии в области нескольких интерфейсов, в том числе пересекающихся и невыпуклых. Для аппроксимации задачи в окрестности интерфейсов используются нерегулярные ячейки (н-ячейки), отсекаемые ими от регулярных ячеек прямоугольной сетки, и законтурные части этих ячеек. Для построения приближенного решения предложено: 1) выписывать дополнительные условия согласования в н-ячейках на интерфейсах, увеличивая количество согласуемых ячеек вблизи интерфейсов; 2) уменьшать общую часть интерфейса, заключенную в соседних ячейках и используемую для записи условий. Для решения краевой задачи Дирихле реализован hp-вариант метода коллокации и наименьших квадратов (hp-МКНК) в сочетании с современными алгоритмами ускорения итерационного процесса: предобуславливание; распараллеливание с помощью OpenMP; ускорение, основанное на подпространствах Крылова; многосеточный алгоритм. При решении различных тестовых задач исследованы сходимость hp-МКНК и обусловленность возникающих переопределенных систем линейных алгебраических уравнений (СЛАУ). Проведено сравнение результатов, полученных МКНК, с результатами других авторов, использовавших метод MIB (англ. matched interface and boundary).
Исследованы возможности численного метода коллокации и наименьших квадратов (КНК) на примерах кусочно-полиномиального решения задачи Дирихле для уравнений Пуассона и типа диффузии-конвекции с особенностями в виде больших градиентов и разрыва решения на границах раздела двух подобластей. Предложены и реализованы новые hp-варианты метода КНК, основанные на присоединении внутри области малых и/или вытянутых нерегулярных ячеек, отсекаемых криволинейной границей раздела от исходных прямоугольных ячеек сетки, к соседним самостоятельным ячейкам. Выписываются с учетом особенности условия согласования между собой кусков решения в ячейках, примыкающих с разных сторон к границе раздела. Проведено сравнение результатов, полученных методом КНК и другими высокоточными методами. Показаны преимущества и достоинства метода КНК. Для ускорения итерационного процесса применены современные алгоритмы и методы: предобуславливание; свойства локальной системы координат в методе КНК; ускорение, основанное на подпространствах Крылова; операция продолжения на многосеточном комплексе; распараллеливание. Исследовано влияние этих способов на количество итераций и время расчетов при аппроксимации полиномами различных степеней.