В рамках статистического подхода, основанного на кинетическом уравнении для функции плотности вероятности распределения скорости и температуры частиц, построена континуальная модель, описывающая псевдотурбулентные течения дисперсной фазы. Введение функции плотности вероятности позволяет получить статистическое описание ансамбля частиц вместо динамического описания отдельных частиц на основе уравнений движения и теплопереноса типа Ланжевена. На основе уравнений для первых и вторых моментов дисперсной фазы проводится численное моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны с облаком частиц. Основные уравнения имеют гиперболический тип, записываются в консервативной форме и решаются с использованием численного метода типа Годунова повышенного порядка точности. Обсуждается влияние двумерных эффектов на формирование ударно-волновой структуры течения и пространственно-временны´е зависимости концентрации частиц и других параметров потока.
Идентификаторы и классификаторы
- eLIBRARY ID
- 43989858
Задачи, связанные с формированием облаков частиц, подъемом пыли за проходящими ударными волнами, воспламенением частиц в высокоскоростных и высокотемпературных потоках, имеют важное практическое значение [1, 2]. Характерные особенности ударно-волновых процессов (больш´ие динамические нагрузки, высокие скорости протекания, сложные волновые картины течений, резкие изменения характеристик потока во времени и пространстве, широкий спектр характерных временн´ых и пространственных масштабов), делают затруднительным их изучение методами экспериментального наблюдения. При этом информация, полученная из данных экспериментов, не является исчерпывающей и требует последующего теоретического анализа, подкрепленного численными расчетами. Вычислительные технологии позволяют получать и визуализировать детальные двух- и трехмерные картины течений, выявлять как локальные особенности, так и интегральные характеристики протекающих процессов [3].
При движении ударной волны по слою частиц формируются вихревые структуры, похожие на те, что возникают при взаимодействии скользящих ударных волн с термальным или жидким слоями [4]. При этом наблюдается развитие неустойчивости поверхности слоя и возникновение вихревых структур, приводящих к подъему вещества из слоя и перемешиванию газов. Математические вопросы, связанные с моделированием двухфазных течений и постановкой задачи Коши для основных уравнений, обсуждаются в работах [5–7].
Список литературы
- Eckhoff R. Dust explosions in the process industries. Hardbound: Gulf Professional Publishing, 2003.
- Волков К.Н., Емельянов В.Н. Течения газа с частицами. М.: Физматлит, 2008. EDN: MUWRVH
- Волков К.Н., Дерюгин Ю.Н., Емельянов В.Н., Козелков А.С., Тетерина И.В. Разностные схемы в задачах газовой динамики на неструктурированных сетках. М.: Физматлит, 2015.
- Ben-Dor G. Dust entrainment by means of a planar shock induced vortex over loose dust layers // Shock Waves. 1995. 4. 285-288.
- Lhuillier D., Chang C.-H., Theofanous T.G. On the quest for a hyperbolic effective-field model of disperse flows // Journal of Fluid Mechanics. 2013. 731. 184-194. EDN: YAENJO
- Theofanous T.G., Mitkin V., Chang C.H. The dynamics of dense particle clouds subjected to shock waves. Part 1. Experiments and scaling laws // Journal of Fluid Mechanics. 2016. 792. 658-681.
- Theofanous T.G., Chang C.-H. The dynamics of dense particle clouds subjected to shock waves. Part 2. Modeling/numerical issues and the way forward // International Journal of Multiphase Flow. 2017. 89. 177-206.
- Regele J.D., Rabinovitch J., Colonius T., Blanquart G. Numerical modeling and analysis of early shock wave interactions with a dense particle cloud // AIAA Paper. 2012. DOI: 10.2514/6.2012-3161 EDN: JJVHGX
- Regele J.D., Rabinovitch J., Colonius T., Blanquart G. Unsteady effects in dense, high speed, particle laden flows // International Journal of Multiphase Flow. 2014. 61. 1-13.
-
Wagner J.L., Beresh S.J., Kearney S.P. A multiphase shock tube for shock wave interactions with dense particle fields // Experiments in Fluids. 2012. 5, N 2. 1507-1517. EDN: PNVNHF
-
Clemins A. Representation of two-phase flows by volume averaging // International Journal of Multiphase Flow. 1988. 14, N 1. 81-90. EDN: XVRQBM
-
Jacobs G.B., Don W.S., Dittmann T. Computation of normal shocks running into a cloud of particles using a highorder particle-source-in-cell method // AIAA Paper. 2009. DOI: 10.2514/6.2009-1310 EDN: OKUDDT
-
Dittmann T.B., Jacobs G.B., Don W.S. Dispersion of a cloud of particles by a moving shock: effects of shape, angle of incidence and aspect ratio // AIAA Paper. 2011. DOI: 10.2514/6.2011-441
-
Hosseinzadeh-Nik Z., Subramaniam S., Regele J.D. Investigation and quantification of flow unsteadiness in shockparticle cloud interaction // International Journal of Multiphase Flow. 2018. 101. 186-201. EDN: VAHDET
-
Sen O., Gaul N.J., Davis S., Choi K.K., Jacobs G., Udaykumar H.S. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure // Shock Waves. 2018. 28, N 3. 579-597. EDN: VDUYEC
-
Mehta Y., Neal C., Salari K., Jackson T.L., Balachandar S., Thakur S. Propagation of a strong shock over a random bed of spherical particles // Journal of Fluid Mechanics. 2018. 839. 157-197. EDN: YHMSEH
-
Theofanous T.G., Mitkin V., Chang C.-H. Shock dispersal of dilute particle clouds // Journal of Fluid Mechanics. 2018. 841. 732-745.
-
Osnes A.N., Vartdal M., Omang M.G., Reif B.A. P. Computational analysis of shock-induced flow through stationary particle clouds // International Journal of Multiphase Flow. 2019. 114. 268-286. EDN: GRHQKB
-
Медведев С.П., Фролов С.М., Гельфанд Б.Е. Ослабление ударных волн насадками из гранулированных материалов // Инженерно-физический журнал. 1990. 58, № 6. 924-928.
-
Уткин П.С. Математическое моделирование взаимодействия ударной волны с плотной засыпкой частиц в рамках двухжидкостного подхода // Химическая физика. 2017. 36, № 11. 61-71. EDN: ZQOCGB
-
Abe A., Takayama K., Itoh K. Experimental and numerical study of shock wave propagation over cylinders and spheres // Transactions on Modelling and Simulation. 2001. 30. 209-218. EDN: MRVACH
-
Mehrabadi M., Tenneti S., Garg R., Subramaniam S. Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas-solid flow: fixed particle assemblies and freely evolving suspensions // Journal of Fluid Mechanics. 2015. 770. 210-246.
-
Sun B., Tenneti S., Subramaniam S., Koch D.L. Pseudo-turbulent heat flux and average gas-phase conduction during gas-solid heat transfer: flow past random fixed particle assemblies // Journal of Fluid Mechanics. 2016. 798. 299-349.
-
Shotorban B., Jacobs G.B., Ortiz O., Truong Q. An Eulerian model for particles nonisothermally carried by a compressible fluid // International Journal of Heat and Mass Transfer. 2013. 65. 845-854. EDN: RJHLMX
-
Волков К.Н., Емельянов В.Н., Карпенко А.Г., Тетерина И.В. Моделирование нестационарного течения газовзвеси, возникающего при взаимодействии ударной волны со слоем частиц // Вычислительные методы и программирование. 2020. 21. 96-114. EDN: BRKNII
-
Pandya R.V. R., Mashayek F. Two-fluid large-eddy simulation approach for particle-laden turbulent flows // International Journal of Heat and Mass Transfer. 2002. 45, N 24. 4753-4759. EDN: LXCEIV
Выпуск
Методы и алгоритмы вычислительной математики и их приложения. Параллельные программные средства и технологии
Другие статьи выпуска
Статья посвящена исследованию нового метода решения сверхбольших задач линейного программирования. Указанный метод получил название “апекс-метод”. Апекс-метод работает по схеме предиктор-корректор. На фазе предиктор находится точка, лежащая на границе n-мерного многогранника, задающего допустимую область задачи линейного программирования. На фазе корректор организуется итерационный процесс, в результате которого строится последовательность точек, сходящаяся к точному решению задачи линейного программирования. В статье дается формальное описание апекс-метода и приводятся сведения о его параллельной реализации на языке C++ с использованием библиотеки MPI. Приводятся результаты масштабных вычислительных экспериментов на кластерной вычислительной системе по исследованию масштабируемости апекс-метода.
В работе предложен алгоритм редукции трехмерных цифровых изображений для ускорения вычисления персистентных диаграмм, характеризующих изменения в топологии порового пространства образцов горной породы. Воксели для удаления выбираются исходя из структуры своей окрестности, что позволяет редуцировать изображение за линейное время. Показано, что эффективность алгоритма существенно зависит от сложности устройства порового пространства и размеров шагов фильтрации.
В данной статье описан подход к созданию прототипа графового фреймворка VGL (Vector Graph Library), нацеленного на эффективную реализацию графовых алгоритмов для современной векторной архитектуры NEC SX–Aurora TSUBASA. Современные векторные системы позволяют значительно ускорять приложения, интенсивно использующие подсистему памяти, подклассом которых являются графовые алгоритмы. Однако подходы к эффективной реализации графовых алгоритмов для векторных систем на сегодняшний день исследованы крайне слабо: вследствие сильно нерегулярной структуры графов реального мира, эффективно задействовать векторные особенности целевых платформ затруднительно. В работе показано, что разработанные на основе предложенного фреймворка VGL реализации графовых алгоритмов не уступают в производительности оптимизированным “вручную” аналогам за счет инкапсуляции большого числа оптимизаций графовых алгоритмов, характерных для векторных систем. Вместе с этим предложенный фреймворк позволяет значительно упростить процесс разработки графовых алгоритмов для векторных систем, на порядок сокращая объем кода реализуемых алгоритмов и скрывая от пользователя особенности программирования систем данного класса.
Показано, что теорема Кенига о нулях аналитической функции, примененная к логарифмической производной целой функции конечного порядка, приводит к алгоритму отыскания нулей, для которого областями сходимости являются многоугольники Вороного искомых нулей. Так как диаграмма Вороного последовательности нулей составляет множество меры нуль, то алгоритм имеет глобальную сходимость. Дана оценка скорости сходимости. Для итераций высших порядков, которые строятся с помощью теоремы Кенига, рассмотрено влияние кратности корня на область сходимости и приводится оценка скорости сходимости.
Рассматривается приближенный метод решения задачи Коши для нелинейных обыкновенных дифференциальных уравнений первого порядка, основанный на применении смещенных рядов Чебышёва и квадратурной формулы Маркова. Приведены способы оценки погрешности приближенного решения, выраженного в виде частичной суммы ряда некоторого порядка. Погрешность оценивается с помощью второго приближенного решения, вычисленного специальным образом и представленного частичной суммой ряда более высокого порядка. На основе предложенных способов оценки погрешности построен алгоритм автоматического разбиения промежутка интегрирования на элементарные сегменты, делающие возможным вычисление приближенного решения с наперед заданной точностью. Работа метода проиллюстрирована примерами, в том числе примером из небесной механики.
Представлено численное исследование влияния шероховатости границраздела в слоистой среде на эффективные упругие свойства тонкослоистой среды. Предложен алгоритм построения статистически эквивалентных моделей слоистых сред двух различных типов. Первый тип включает в себя модели с постоянными упругими параметрами, но с шероховатой границей раздела. Второй тип состоит из моделей с плоскими границами раздела, но с параметрами, задаваемыми случайными величинами. При этом распределение упругих параметров в моделях второго типа (средние значения и ковариационная матрица) однозначно определяется шероховатостью границ раздела (длина корреляции и стандартное отклонение) в моделях первого типа.
Рассматривается проблема оптимального управления системой, состоящей из краевой задачи первого рода для квазилинейного параболического уравнения с неизвестным коэффициентом, а также из уравнения изменения по времени этого коэффициента. Обоснованы две постановки вариационных задач с финальным наблюдением, в которых управлением является граничный режим на одной из границ области. Доказаны свойства непрерывности и дифференцируемости соответствующих минимизируемых функционалов. Дано явное представление для дифференциалов через решение сопряженных задач. Установлен вид этих сопряженных задач, доказана их однозначная разрешимость в классе гладких функций. Проведенное исследование связано с моделированием и управлением физико-химическими процессами с изменяющимися внутренними свойствами материалов.
Сформулирована игровая модель противоборства в виде модели “нападение и защита”, указаны способы вычисления ресурсов сторон, анализированы эффективность их стратегий и установлены условия существования оптимального решения рассматриваемых задач.
Предложена нестационарная 2D-модель транспорта донных отложений в прибрежной зоне мелководных водоемов, дополненная уравнениями Навье–Стокса, неразрывности и состояния водной среды. Дискретная модель транспорта наносов получена в результате аппроксимации соответствующей линеаризованной непрерывной модели. Поскольку задачи прогнозирования транспорта наносов требуют решения в реальном или ускоренном масштабах времени, на сетках, включающих 106–109 узлов, необходима разработка параллельных алгоритмов задач гидродинамики на системах с массовым параллелизмом. Представлены результаты работы созданного эффективного программного обеспечения для выполнения гидродинамических вычислительных экспериментов, позволяющие проводить численное моделирование деформации дна в прибрежной зоне водоема. Приведены результаты численных экспериментов.
Издательство
- Издательство
- МГУ
- Регион
- Россия, Москва
- Почтовый адрес
- оссийская Федерация, 119991, Москва, Ленинские горы, д. 1
- Юр. адрес
- оссийская Федерация, 119991, Москва, Ленинские горы, д. 1
- ФИО
- Садовничий Виктор Антонович (РЕКТОР)
- E-mail адрес
- info@rector.msu.ru
- Контактный телефон
- +7 (495) 9391000
- Сайт
- https://msu.ru/