Статья посвящена исследованию синхронизации колебаний (циклов) в системе трех популяций, связанных с помощью миграции в кольцо. Рассматривается модель динамики численности с дискретным временем, представляющая собой систему трех идентичных логистических отображений, которые диссипативно связаны между собой. Построены одномерные бифуркационные диаграммы (деревья), дополненные показателем захвата фаз колебаний (циклов) численностей популяций на смежных участках. Проведен ряд численных экспериментов, которые демонстрируют фазовую мультистабильность - сосуществование циклов с разными фазами. Используя качественные методы исследования динамических систем, построен полный фазовый портрет модели, показывающий, что в фазовом пространстве существует несколько периодических точек, соответствующих элементам синхронных и несинхронных циклов. Исследуются условия устойчивости 2- и 3-цикла. Показано, что два этих цикла представлены тремя возможными вариантами: 1) полностью синхронный режим, когда значения численностей в трех популяциях совпадают в любой момент времени; 2) частично синхронный режим, когда значения численностей совпадают только для двух популяций, 3) несинхронный (несинфазный), когда все три численности принимают различные значения. Для 2-цикла третий вариант неустойчив и возможен как часть длительного переходного процесса. Обнаружено, что для 3-цикла помимо синхронного и частично синхронного режима возможно устойчивое несинфазное поведение сразу трех популяций. Показано, что устойчивые и неустойчивые периодические точки лежат на определенных поверхностях (инвариантных многообразиях), которые отделяют друг от друга области притяжения режимов с разной степенью фазовой синхронизации.