В работе рассматривается решение многомерных задач многоэкстремальной оптимизации с использованием деревьев решений для выявления областей притяжения локальных минимумов. Целевая функцияпредставлена как «черный ящик», она может быть недифференцируемой, многоэкстремальной и вычислительно трудоемкой. Для функции предполагается, что она удовлетворяет условию Липшица с априоринеизвестной константой. Для решения поставленной задачи многоэкстремальной оптимизации применятсяалгоритм глобального поиска. Хорошо известно, что сложность решения существенно зависит от наличия нескольких локальных экстремумов. В данной работе предложена модификация алгоритма, в которойопределяются окрестности локальных минимумов целевой функции на основе анализа накопленной поисковой информации. Проведение такого анализа с использованием методов машинного обучения позволяетпринять решение о запуске локального метода, что может ускорить сходимость алгоритма. Данный подход был подтвержден результатами численных экспериментов, демонстрирующих ускорение при решениинабора тестовых задач.
В статье рассматривается параллельный алгоритм решения задач глобальной оптимизации и обсуждается его реализация с использованием набора инструментов Intel oneAPI. Предполагается, что целевая функция задачи задана как “черный ящик” и удовлетворяет условию Липшица. Изложенный в статье параллельный алгоритм использует схему редукции размерности на основе кривых Пеано, которые непрерывно и однозначно отображают отрезок вещественной оси на гиперкуб. В качестве средства для реализации параллельного алгоритма использован инструментарий Intel oneAPI, который позволяет писать один код как для центрального процессора, так и для графических ускорителей. Приведены результаты вычислительных экспериментов, полученные при решении серии сложных задач многоэкстремальной оптимизации.