ISSN 2305-9052 · EISSN 2410-7034
Языки: ru · en

ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА

ОБ ИСПОЛЬЗОВАНИИ ДЕРЕВЬЕВ РЕШЕНИЙ ДЛЯ ВЫЯВЛЕНИЯ ОБЛАСТЕЙ ПРИТЯЖЕНИЯ ЛОКАЛЬНЫХ МИНИМУМОВ В ПАРАЛЛЕЛЬНОМ АЛГОРИТМЕ ГЛОБАЛЬНОЙ ОПТИМИЗАЦИИ (2023)

В работе рассматривается решение многомерных задач многоэкстремальной оптимизации с использованием деревьев решений для выявления областей притяжения локальных минимумов. Целевая функцияпредставлена как «черный ящик», она может быть недифференцируемой, многоэкстремальной и вычислительно трудоемкой. Для функции предполагается, что она удовлетворяет условию Липшица с априоринеизвестной константой. Для решения поставленной задачи многоэкстремальной оптимизации применятсяалгоритм глобального поиска. Хорошо известно, что сложность решения существенно зависит от наличия нескольких локальных экстремумов. В данной работе предложена модификация алгоритма, в которойопределяются окрестности локальных минимумов целевой функции на основе анализа накопленной поисковой информации. Проведение такого анализа с использованием методов машинного обучения позволяетпринять решение о запуске локального метода, что может ускорить сходимость алгоритма. Данный подход был подтвержден результатами численных экспериментов, демонстрирующих ускорение при решениинабора тестовых задач.

Тип: Статья
Автор (ы): Баркалов Константин Александрович, Лебедев Илья Геннадьевич, Силенко Д. И.
Ключевые фразы: ГЛОБАЛЬНАЯ ОПТИМИЗАЦИЯ, МНОГОЭКСТРЕМАЛЬНЫЕ ФУНКЦИИ, ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛЕНИЯ, машинное обучение, ДЕРЕВО РЕШЕНИЙ

Идентификаторы и классификаторы

УДК
519.853.4. Невыпуклые и многоэкстремальные задачи
eLIBRARY ID
54646998
Текстовый фрагмент статьи