ISSN 2305-9052 · EISSN 2410-7034
Языки: ru · en

ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА

Архив статей журнала

РАСПРЕДЕЛЕНИЕ КВАДРАТОВ И ПРОВЕРКА ГИПОТЕЗ В НЕЧЕТНЫХ РАЗБИЕНИЯХ ЧИСЕЛ (2024)
Выпуск: Т. 13 № 1 (2024)
Авторы: Самойлов A. A.

В статье рассматриваются разбиения натурального числа n, части которого различны, нечетны и их произведение не является квадратом. Такие разбиения применимы для определения ранга группы центральных единиц целочисленного группового кольца знакопеременной группы. Количество разбиений растет экспоненциально, следовательно, задача перебора является вычислительно затратной. В статье предложен параллельный алгоритм в общей памяти для нахождения количества разбиений числа n с дополнительными условиями. Алгоритм основан на концепции распараллеливания по данным и использовании вложенного параллелизма. Выделяется множество длин K разбиения числа n, элементы которого обрабатываются параллельно. Во время обработки длины k разбиения числа n выделяется множество уровней L, рассмотрение которого также выполняется параллельно. Приемлемые значения ускорения и параллельной эффективности предложенного алгоритма получаются при использовании двух нитей на параллельный регион по длинам и двух - по уровням. Таким образом, ускорение при разных n превышает 2.1, а параллельная эффективность не опускается ниже 50 %. Полученные результаты использованы для проверки гипотез Каргаполова и анализа распределения значений нечетных разбиений на некоторых диапазонах. Предложен алгоритм поиска оптимального коэффициента c. С помощью этого алгоритма получена асимптотическая формула количества разбиения числа n, в котором части различны и нечетны, а их произведение является квадратом. Эта формула основана на экспериментальных данных и сформулирована как гипотеза.

Сохранить в закладках
ОБЗОР ПРИМЕНЕНИЯ ГЛУБОКИХ НЕЙРОННЫХ СЕТЕЙ И ПАРАЛЛЕЛЬНЫХ АРХИТЕКТУР В ЗАДАЧАХ ФРАГМЕНТАЦИИ ГОРНЫХ ПОРОД (2023)
Выпуск: Т. 12 № 4 (2023)
Авторы: Ронкин Михаил Владимирович, Акимова Елена Николаевна, Мисилов Владимир Евгеньевич, Решетников Кирилл Игоревич

Оценка производительности добычи полезных ресурсов, в том числе определение геометрических размеров объектов горной породы в открытом карьере, является одной из наиболее важных задач в горнодобывающей промышленности. Задача фрагментации горных пород решается с помощью методов компьютерного зрения, таких как экземплярная сегментация или семантическая сегментация. В настоящее время для решения таких задач для цифровых изображений используются нейронные сети глубокого обучения. Нейронные сети требуют больших вычислительных мощностей для обработки цифровых изображений высокого разрешения и больших наборов данных. Для решения этой проблемы в литературе предлагается использование облегченных архитектур нейронных сетей, а также методов оптимизации производительности, таких как параллельные вычисления с помощью центральных, графических и специализированных процессоров. В обзоре рассматриваются последние достижения в области нейронных сетей глубокого обучения для решения задач компьютерного зрения применительно к фрагментации горных пород и вопросы повышения производительности реализаций нейронных сетей на различных параллельных архитектурах.

Сохранить в закладках
ОБ ИСПОЛЬЗОВАНИИ ДЕРЕВЬЕВ РЕШЕНИЙ ДЛЯ ВЫЯВЛЕНИЯ ОБЛАСТЕЙ ПРИТЯЖЕНИЯ ЛОКАЛЬНЫХ МИНИМУМОВ В ПАРАЛЛЕЛЬНОМ АЛГОРИТМЕ ГЛОБАЛЬНОЙ ОПТИМИЗАЦИИ (2023)
Выпуск: Т. 12 № 3 (2023)
Авторы: Баркалов Константин Александрович, Лебедев Илья Геннадьевич, Силенко Д. И.

В работе рассматривается решение многомерных задач многоэкстремальной оптимизации с использованием деревьев решений для выявления областей притяжения локальных минимумов. Целевая функцияпредставлена как «черный ящик», она может быть недифференцируемой, многоэкстремальной и вычислительно трудоемкой. Для функции предполагается, что она удовлетворяет условию Липшица с априоринеизвестной константой. Для решения поставленной задачи многоэкстремальной оптимизации применятсяалгоритм глобального поиска. Хорошо известно, что сложность решения существенно зависит от наличия нескольких локальных экстремумов. В данной работе предложена модификация алгоритма, в которойопределяются окрестности локальных минимумов целевой функции на основе анализа накопленной поисковой информации. Проведение такого анализа с использованием методов машинного обучения позволяетпринять решение о запуске локального метода, что может ускорить сходимость алгоритма. Данный подход был подтвержден результатами численных экспериментов, демонстрирующих ускорение при решениинабора тестовых задач.

Сохранить в закладках