- Blázquez-García A., Conde A., Mori U., Lozano J.A. A Review on Outlier/Anomaly Detection in Time Series Data // ACM Comput. Surv. 2021. Vol. 54, no. 3. P. 56:1-56:33. DOI: 10.1145/3444690
- Kumar S., Tiwari P., Zymbler M.L. Internet of Things is a revolutionary approach for future technology enhancement: a review // J. Big Data. 2019. Vol. 6. P. 111. 10. 1186/s40537-019-0268-2. DOI: 10.1186/s40537-019-0268-2 EDN: HEOOCC
- Цымблер М.Л., Краева Я.А., Латыпова Е.А. и др. Очистка сенсорных данных в интеллектуальных системах управления отоплением зданий // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2021. Т. 10, № 3. C. 16-36. DOI: 10.14529/cmse210302 EDN: XPOAYC
- Иванов С.А., Никольская К.Ю., Радченко Г.И. и др. Концепция построения цифрового двойника города // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2020. Т. 9, № 4. C. 5-23. DOI: 10.14529/cmse200401 EDN: CNBYFY
- Volkov I., Radchenko G.I., Tchernykh A. Digital Twins, Internet of Things and Mobile Medicine: A Review of Current Platforms to Support Smart Healthcare // Program. Comput. Softw. 2021. Vol. 47, no. 8. P. 578-590. DOI: 10.1134/S0361768821080284 EDN: RCPEWQ
- Schmidl S., Wenig P., Papenbrock T. Anomaly Detection in Time Series: A Comprehensive Evaluation // Proc. VLDB Endow. 2022. Vol. 15, no. 9. P. 1779-1797. URL: https://www.vldb.org/pvldb/vol15/p1779-wenig.pdf.
- Hodge V.J., Austin J. A Survey of Outlier Detection Methodologies // Artif. Intell. Rev. 2004. Vol. 22, no. 2. P. 85-126. DOI: 10.1023/B:AIRE.0000045502.10941.a9. EDN: AKQMXI
- Chicco D. Siamese Neural Networks: An Overview // Artificial Neural Networks / ed. by H. Cartwright. New York, NY: Springer US, 2021. P. 73-94. DOI: 10.1007/978-1-07160826-5_3
- He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016. P. 770-778. DOI: 10.1109/CVPR.2016.90
-
Yankov D., Keogh E.J., Rebbapragada U. Disk aware discord discovery: Finding unusual time series in terabyte sized datasets // Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007), October 28-31, 2007, Omaha, Nebraska, USA. 2007. P. 381-390. DOI: 10.1109/ICDM.2007.61
-
Imani S., Madrid F., Ding W., et al. Matrix Profile XIII: Time Series Snippets: A New Primitive for Time Series Data Mining // 2018 IEEE International Conference on Big Knowledge, ICBK 2018, Singapore, November 17-18, 2018 / ed. by X. Wu, Y. Ong, C.C. Aggarwal, H. Chen. IEEE Computer Society, 2018. P. 382-389. DOI: 10.1109/ICBK.2018.00058
-
Paparrizos J., Kang Y., Boniol P., et al. TSB-UAD: An End-to-End Benchmark Suite for Univariate Time-Series Anomaly Detection // Proc. VLDB Endow. 2022. Vol. 15, no. 8. P. 1697-1711. URL: https://www.vldb.org/pvldb/vol15/p1697-paparrizos.pdf.
-
Yankov D., Keogh E.J., Rebbapragada U. Disk aware discord discovery: finding unusual time series in terabyte sized datasets // Knowl. Inf. Syst. 2008. Vol. 17, no. 2. P. 241-262. DOI: 10.1007/s10115-008-0131-9 EDN: VPCVZO
-
Yeh C.M., Zhu Y., Ulanova L., et al. Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile // Data Min. Knowl. Discov. 2018. Vol. 32, no. 1. P. 83-123. DOI: 10.1007/s10618-017-0519-9 EDN: YOESGH
-
Nakamura T., Imamura M., Mercer R., Keogh E.J. MERLIN: Parameter-free discovery of arbitrary length anomalies in massive time series archives // 20th IEEE International Conference on Data Mining, ICDM 2020, Sorrento, Italy, November 17-20, 2020 / ed. by C. Plant, H. Wang, A. Cuzzorea, et al. 2020. P. 1190-1195. DOI: 10.1109/ICDM50108.2020.00147
-
Lu Y., Wu R., Mueen A., et al. DAMP: accurate time series anomaly detection on trillions of datapoints and ultra-fast arriving data streams // Data Min. Knowl. Discov. 2023. Vol. 37, no. 2. P. 627-669. DOI: 10.1007/s10618-022-00911-7 EDN: LVOTMD
-
Boniol P., Linardi M., Roncallo F., et al. Unsupervised and scalable subsequence anomaly detection in large data series // VLDB J. 2021. Vol. 30, no. 6. P. 909-931. DOI: 10.1007/s00778-021-00655-8
-
Boniol P., Linardi M., Roncallo F., et al. Correction to: Unsupervised and scalable subsequence anomaly detection in large data series // VLDB J. 2023. Vol. 32, no. 2. P. 469. DOI: 10.1007/s00778-021-00678-1
-
Li J., Pedrycz W., Jamal I. Multivariate time series anomaly detection: A framework of Hidden Markov Models // Appl. Soft Comput. 2017. Vol. 60. P. 229-240. 10.1016/ j.asoc.2017.06.035. DOI: 10.1016/j.asoc.2017.06.035
-
Marteau P., Soheily-Khah S., Béchet N. Hybrid Isolation Forest - Application to Intrusion Detection // CoRR. 2017. Vol. abs/1705.03800. arXiv: 1705.03800. URL: http://arxiv.org/abs/1705.03800.
-
Ryzhikov A., Borisyak M., Ustyuzhanin A., Derkach D. Normalizing flows for deep anomaly detection // CoRR. 2019. Vol. abs/1912.09323. arXiv: 1912.09323. URL: http://arxiv.org/abs/1912.09323.
-
Malhotra P., Vig L., Shroff G., Agarwal P. Long Short Term Memory Networks for Anomaly Detection in Time Series // 23rd European Symposium on Artificial Neural Networks, ESANN 2015, Bruges, Belgium, April 22-24, 2015. 2015. URL: https://www.esann.org/sites/default/files/proceedings/legacy/es2015-56.pdf.
-
Munir M., Siddiqui S.A., Dengel A., Ahmed S. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series // IEEE Access. 2019. Vol. 7. P. 1991 2005. DOI: 10.1109/ACCESS.2018.2886457
-
Zymbler M., Kraeva Y. High-Performance Time Series Anomaly Discovery on Graphics Processors // Mathematics. 2023. Vol. 11, no. 14. P. 3193. DOI: 10.3390/math11143193 EDN: JOUCBW
-
Gharghabi S., Imani S., Bagnall A.J., et al. An ultra-fast time series distance measure to allow data mining in more complex real-world deployments // Data Min. Knowl. Discov. 2020. Vol. 34, no. 4. P. 1104-1135. DOI: 10.1007/s10618-020-00695-8 EDN: ORIMXO
-
Yeh C.M., Zhu Y., Ulanova L., et al. Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets // IEEE 16th International Conference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain / ed. by F. Bonchi, J. Domingo-Ferrer, R. Baeza-Yates, et al. IEEE Computer Society, 2016. P. 1317-1322. DOI: 10.1109/ICDM.2016.0179
-
Ioffe S., Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift // Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. Vol. 37 / ed. by F.R. Bach, D.M. Blei. JMLR.org, 2015. P. 448-456. JMLR Workshop and Conference Proceedings. URL: http://proceedings.mlr.press/v37/ioffe15.html.
-
Hochreiter S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions // Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1998. Vol. 6, no. 2. P. 107-116. DOI: 10.1142/S0218488598000094 EDN: ESDZQL
-
Hadsell R., Chopra S., LeCun Y. Dimensionality Reduction by Learning an Invariant Mapping // 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), 17-22 June 2006, New York, NY, USA. IEEE Computer Society, 2006. P. 1735-1742. DOI: 10.1109/CVPR.2006.100
-
Zymbler M., Goglachev A. Fast Summarization of Long Time Series with Graphics Processor // Mathematics. 2022. Vol. 10, no. 10. P. 1781. DOI: 10.3390/math10101781 EDN: YIVHER
-
Liu F.T., Ting K.M., Zhou Z. Isolation Forest // Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy. IEEE Computer Society, 2008. P. 413-422. DOI: 10.1109/ICDM.2008.17
-
Su Y., Zhao Y., Niu C., et al. Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network // Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. ACM, 2019. P. 2828-2837. DOI: 10.1145/3292500.3330672
-
Roggen D., Calatroni A., Rossi M., et al. Collecting complex activity datasets in highly rich networked sensor environments // Seventh International Conference on Networked Sensing Systems, INSS 2010, Kassel, Germany, June 15-18, 2010. IEEE, 2010. P. 233-240. DOI: 10.1109/INSS.2010.5573462
-
Bächlin M., Plotnik M., Roggen D., et al.Wearable assistant for Parkinson's disease patients with the freezing of gait symptom // IEEE Trans. Inf. Technol. Biomed. 2010. Vol. 14, no. 2. P. 436-446. DOI: 10.1109/TITB.2009.2036165
-
Goldberger A.L., Amaral L.A.N., Glass L., et al. PhysioBank, PhysioToolkit, and PhysioNet components of a new research resource for complex physiologic signals // Circulation. 2000. Vol. 101, no. 23. P. 215-220. DOI: 10.1161/01.CIR.101.23.e215
-
Moody G., Mark R. The impact of the MIT-BIH Arrhythmia Database // IEEE Engineering in Medicine and Biology Magazine. 2001. Vol. 20, no. 3. P. 45-50. DOI: 10.1109/51.932724
-
KPI Anomaly Detection Dataset. 2018. URL: http://iops.ai/dataset_detail/?id=10 (дата обращения: 15.08.2023).
-
Laptev N., Amizadeh S., Billawala Y. S5 - A Labeled Anomaly Detection Dataset, version 1.0(16M). 2015. URL: https://webscope.sandbox.yahoo.com/catalog.php?%20datatype=s%5C&did=70 (дата обращения: 15.08.2023).
-
Schölkopf B., Williamson R.C., Smola A.J., et al. Support Vector Method for Novelty Detection // Advances in Neural Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 - December 4, 1999] / ed. by S.A. Solla, T.K. Leen, K. Müller. The MIT Press, 1999. P. 582-588. URL: http://papers.nips.cc/paper/1723support-vector-method-for-novelty-detection.
-
Sakurada M., Yairi T. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction // Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast, Australia, QLD, Australia, December 2, 2014 / ed. by A. Rahman, J.D. Deng, J. Li. ACM, 2014. P. 4. DOI: 10.1145/2689746.2689747
-
Garcia G.R., Michau G., Ducoffe M., et al. Time Series to Images: Monitoring the Condition of Industrial Assets with Deep Learning Image Processing Algorithms // CoRR. 2020. Vol. abs/2005.07031. arXiv: 2005.07031. URL: https://arxiv.org/abs/2005.07031.
-
Wang Y., Han L., Liu W., et al. Study on wavelet neural network based anomaly detection in ocean observing data series // Ocean Engineering. 2019. Vol. 186. P. 106129. DOI: 10.1016/j.oceaneng.2019.106129 EDN: ZVHOVZ
-
Li Z., Chen W., Pei D. Robust and Unsupervised KPI Anomaly Detection Based on Conditional Variational Autoencoder // 37th IEEE International Performance Computing and Communications Conference, IPCCC 2018, Orlando, FL, USA, November 17-19, 2018. IEEE, 2018. P. 1-9. DOI: 10.1109/PCCC.2018.8710885
-
Bashar M.A., Nayak R. TAnoGAN: Time Series Anomaly Detection with Generative Adversarial Networks // 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020, Canberra, Australia, December 1-4, 2020. IEEE, 2020. P. 1778-1785. DOI: 10.1109/SSCI47803.2020.9308512
-
Wenig P., Schmidl S., Papenbrock T. TimeEval: A Benchmarking Toolkit for Time Series Anomaly Detection Algorithms // Proc. VLDB Endow. 2022. Vol. 15, no. 12. P. 3678-3681. URL: https://www.vldb.org/pvldb/vol15/p3678-schmidl.pdf.
-
Paparrizos J., Boniol P., Palpanas T., et al. Volume Under the Surface: A New Accuracy Evaluation Measure for Time-Series Anomaly Detection // Proc. VLDB Endow. 2022. Vol. 15, no. 11. P. 2774-2787. URL: https: // www. vldb. org / pvldb / vol15 / p2774 paparrizos.pdf.
-
Биленко Р.В., Долганина Н.Ю., Иванова Е.В., Рекачинский А.И. Высокопроизводительные вычислительные ресурсы Южно-Уральского государственного университета // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2022. Т. 11, № 1. C. 15-30. DOI: 10.14529/cmse220102 EDN: OLCPUG
-
Лопухов И. Сети Real-Time Ethernet: от теории к практической реализации // СТА: Современные технологии автоматизациии. 2010. Т. 10, № 3. C. 8-15.
-
Каталог 2021. Датчики температуры Emerson. URL: https://www.c-o-k.ru/library/catalogs/emerson/110477.pdf (дата обращения: 03.09.2021).