ЯВНО-НЕЯВНАЯ СХЕМА CABARETI-NH ДЛЯ УРАВНЕНИЙ ДИНАМИКИ СЛАБОСЖИМАЕМОЙ ЖИДКОСТИ (2023)

В статье рассматривается явно-неявная балансно-характеристическая схема CABARETI-NH (CABARET Implicit Non-Hydrostatic), основанная на схеме КАБАРЕ, для решения гиперболизированной системы уравнений Навье-Стокса. Неявность вдоль одного пространственного направления позволяет значительно увеличить шаг по времени на вычислительных сетках с большим аспектным отношением ячеек. Для разрешения введенной неявности используется метод гиперболической прогонки. Это позволяет сохранить вычислительную эффективность алгоритма на уровне явных схем. Приводятся результаты валидации модели на лабораторном эксперименте трехмерного гравитационного течения стратифицированной жидкости.

Издание: ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Выпуск: Т. 24 № 2 (2023)
Автор(ы): Головизнин Василий Михайлович, Майоров П. А., Афанасьев Никита Александрович, Соловьев Андрей Валерьевич
Сохранить в закладках
СХЕМА КАБАРЕ НА ПОДВИЖНЫХ СЕТКАХ ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ ГАЗОВОЙ ДИНАМИКИ И ДИНАМИЧЕСКОЙ УПРУГОСТИ (2021)

Схема КАБАРЕ, являющаяся представителем семейства балансно-характеристических методов, широко используется при решении многих задач для систем дифференциальных уравнений гиперболического типа в эйлеровых переменных. Возрастающая актуальность задач взаимодействия деформируемых тел с потоками жидкости и газа требует адаптации этого метода на лагранжевы и смешанные эйлерово-лагранжевы переменные. Ранее схема КАБАРЕ была построена для одномерных уравнений газовой динамики в массовых лагранжевых переменных, а также для трехмерных уравнений динамической упругости. В первом случае построенную схему не удалось обобщить на многомерные задачи, а во втором - использовался необратимый по времени алгоритм передвижения сетки. В данной работе представлено обобщение метода КАБАРЕ на двумерные уравнения газовой динамики и динамической упругости в смешанных эйлерово-лагранжевых и лагранжевых переменных. Построенный метод является явным, легко масштабируемым и обладает свойством временной обратимости. Метод тестируется на различных одномерных и двумерных задачах для обеих систем уравнений (соударение упругих тел, поперечные колебания упругой балки, движение свободной границы идеального газа).

Издание: ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Выпуск: Т. 22 № 4 (2021)
Автор(ы): Афанасьев Никита Александрович, Майоров П. А.
Сохранить в закладках