Целью данной исследовательской работы является исследование эффективности различных методов машинного обучения. В данной работе будут проанализированы и будет проведено сравнение нескольких широко используемых методов, включая линейную регрессию, PolynomialFeatures, метод градиентного бустинга, метод случайного леса.
Данная статья представляет методологию определения атмосферного давления с использованием метода k-ближайших соседей. В ней процесс сбора данных о погоде в 3 населённых пунктах. Затем подробно объясняется принцип работы метода k-ближайших соседей, который используется для прогнозирования атмосферного давления на основе близких значений измерений. Эффективность метода и точность результатов подтверждаются в экспериментальных исследованиях, где сравниваются предсказанные и реальные значения давления.