Рассматриваются возможности использования D–D-плазмы для генерации быстрых нейтронов. Важное преимущество D–D-реакции заключается в том, что отпадает необходимость воспроизводства трития. D–D-плазма может быть источником нейтронов с энергией 14 МэВ, которые рождаются в результате сгорания образующегося трития. Рассмотрено влияние примеси лития, который в небольшом количестве улучшает энергобаланс D–Dплазмы. Оптимальное с точки зрения критерия Лоусона отношение концентраций лития и дейтерия составляет 0,3—0,4. Выход в нейтронах с энергией 14 МэВ составляет около 50 % при добавлении лития-6 и около 35 % при добавлении лития-7. Требуются температуры около 100 кэВ. Поэтому для этого вида термоядерного топлива давление плазмы должно быть примерно равно магнитному давлению. Для увеличения скорости реакции может быть использован интенсивный нагрев пучком быстрых атомов. При этом коэффициент усиления в плазме Q ~ 1 может достигаться при температуре электронов около 100 кэВ и энергии инжектируемых дейтронов около 2 МэВ.
В работе обсуждаются некоторые свойства биокерамических бислойных покрытий на поверхностях титанового сплава Ti-6Al-4V, полученных путем микродугового ок-сидирования и последующего детонационного напыления кальций фосфатных (Ca-P) покрытий на основе гидроксиапатита. Получены двухслойные системы: слой TiO2 на подложке (толщиной покрытия 2–3 мкм) и последующий Ca-P слой (толщиной до 100–150 мкм). Данные покрытия были исследованы методами электронной микро-скопии, рентгеноструктурного и энергодисперсионного анализа. В составе обнаружены только биосовместимые фазы – анатаз, гидроксиапатит и трикальций фосфат. При этом никаких цитотоксических компонентов не зарегистрировано. Стехиометрическое соотношение составляло Ca/P 1,56–1,86. Сделано заключение о перспективности предложенной комплексной технологии нанесения бислойных керамик на титановые импланты.
В работе представлены результаты исследования процесса микродугового оксидирования с добавкой фосфатов кальция для стимуляции эффективности интеграции в кость титановых мембран. Образцы покрытий были проанализированы с использованием рентгенофазового анализа и рентгеновской флюоресценции. In vivo оценка эффективности интеграции проведена с применением лабораторных животных, путём микрокомпьютерной томографии и гистологии. В результате продемонстрировано, что использованная методика имела положительный эффект по сравнению с необработанными мембранами, что выражалось в стимуляции образования костного регенерата от краев дефекта при практически полном отсутствии воспаления.