Изучаются интерполяционные последовательности в смысле Павлова — Коревара — Диксона (Ω–интерполяционные последовательности) и обобщения, а также аппроксимативные свойства систем экспонент с соответствующими показателями. Так, представляет интерес интерполяционная задача в классе целых функций экспоненциального типа, определяемом некоторой возрастающей мажорантой из класса сходимости (неквазианалитическим весом). В более узком классе, когда мажоранта обладала свойством вогнутости аналогичная задача в 1978 году была полностью решена Б. Берндсоном, но в случае, когда узлы интерполяции — натуральные числа. Он получил критерий разрешимости данной интерполяционной задачи. Соответствующий критерий для произвольной возрастающей последовательности положительных узлов недавно был получен Р. А. Гайсиным. Он же в 2021 году доказал соответствующий критерий интерполяционности (