Цифровая трансформация промышленного сектора формирует новые требования к эффективности и гибкости производственных процессов. Одним из ключевых инструментов в этом контексте становится искусственный интеллект (ИИ), способный обеспечивать интеллектуальную автоматизацию, прогнозирование, адаптацию и самообучение в рамках производственного цикла. В статье рассматриваются основные подходы к внедрению ИИ в производственную среду, проанализированы технологии машинного обучения, компьютерного зрения, интеллектуального анализа данных и предиктивной аналитики, а также их роль в повышении операционной эффективности. Осуществляется оценка экономических эффектов внедрения ИИ в производственные системы на основе сравнительного анализа кейсов. Особое внимание уделено барьерам, связанным с цифровой зрелостью предприятий, кадровым обеспечением и трансформацией бизнес-моделей.