Компенсация реактивной мощности на базе конденсаторной установки, подключенной к сельской распределительной сети 0,4 кВ, при использовании неспециализированных контакторов сопровождается возникновением больших пусковых токов конденсаторов. К тому же установка проводниковой связи с трансформаторами тока нагрузки требует конструкционной доработки конденсаторной установки. С целью устранения указанных недостатков предлагается использовать батарею конденсаторов, управляемую реле времени и защищаемую от пусковых токов тремя RL-контурами. «Включение-отключение» батареи конденсаторов при этом должно производиться внутренним сигналом конденсаторной установки, задающим временной интервал «Включено-выключено». С помощью математической модели, а также трехфазной физической модели мощностью 1,2 квар изучалось поведение переходных и установившихся токов при различных значениях параметров RL-контуров. Исходными неизменными параметрами модели являлись реактивные сопротивления конденсаторов и катушек индуктивности. Номинальная величина тока фазы батареи конденсаторов составляла 2,14 А. Переменными параметрами были величины активных сопротивлений RL-контуров, принимавших значения 0, 10, 20, 30 и ∞. Изучалась осциллограмма стационарного и переходного тока. В результате установлено, с целью соответствия батареи конденсаторов критерию использования автоматических выключателей и контакторов сети 0,4 кВ, что величина сопротивления резистора RL-контура каждой фазы трехфазной батареи конденсаторов должна десятикратно превышать реактивное сопротивление токоограничивающей катушки RL-контура и быть в 5 раз меньше величины реактивного сопротивления силового конденсатора фазы батареи конденсаторов. В сельских электрических сетях 0,4 кВ для компенсации реактивной мощности можно установить одиночную конденсаторную установку мощностью 25 квар с простым автономным управлением. Несколько конденсаторных установок могут компенсировать реактивные нагрузки 50 и 75 квар.