ПРИМЕНЕНИЕ МАШИННОГО ОБУЧЕНИЯ НА ГРАФАХ ДЛЯ ПОСТРОЕНИЯ РЕКОМЕНДАТЕЛЬНЫХ СИСТЕМ, УЧИТЫВАЮЩИХ ИНДИВИДУАЛЬНОСТЬ ПОЛЬЗОВАТЕЛЕЙ (2025)

В условиях стремительного роста объёмов грузоперевозок и усложнения логистических процессов особую актуальность приобретает внедрение интеллектуальных технологий, способных адаптироваться к быстро меняющимся требованиям рынка. Одним из таких решений является применение методов машинного обучения на графах для построения рекомендательных систем в логистике. Целью данной работы является исследование возможностей персонализированных графовых моделей, предназначенных для оптимизации логистических процессов за счёт более точного подбора маршрутов, перевозчиков и сопутствующих услуг с учётом индивидуальных предпочтений участников логистической цепочки. В работе исследуется применение графовых методов машинного обучения для построения рекомендательных систем в сфере транспортной логистики с учётом индивидуальных предпочтений пользователей. Предложен подход к персонализации графовых моделей на основе интеграции пользовательских характеристик и динамического пересчёта весов связей в графе. Разработанная модель позволяет оптимизировать логистические процессы, повышая релевантность рекомендаций по выбору маршрутов и перевозчиков. Эффективность предложенного метода подтверждена экспериментальными результатами на реальных данных: достигнуты значения Precision 88 %, Recall 81 % и NDCG 0,94. Представленные результаты демонстрируют преимущества разработанной системы по сравнению с традиционными методами логистического планирования в условиях динамически изменяющейся среды.

Издание: СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ
Выпуск: № 6 (2025)
Автор(ы): Хасанов Ильнур Ильдарович, Хасанова Зиля Рустэмовна
Сохранить в закладках