Изучаются новые нелокальные краевые задачи с интегро-дифференциальным граничным условием для нестационарных дифференциальных уравнений соболевского типа четвёртого порядка. Особенностью изучаемых задач является то, что в них в граничном условии содержатся производные как по пространственным переменным, так и по временн´ой переменной. Для исследуемых задач доказаны теоремы существования и единственности регулярных решений, имеющих все обобщённые по С. Л. Соболеву производные, входящие в соответствующее уравнение.
Изучены обратные задачи определения вместе с решением вырождающегося дифференциального уравнения с кратными характеристиками также неизвестного коэффициента, задающего внешнее воздействие (свободный член). Характер вырождения в изучаемом уравнении, а также вид неизвестного коэффициента определяются временн´ой переменной. Для изучаемых задач доказываются теоремы существования и единственности регулярных решений - решений, имеющих все обобщённые по С. Л. Соболеву производные, входящие в уравнение.