Работа посвящена решению задачи прореживания нейронной сети, целью которой является уменьшение количества параметров сети при сохранении высокой точности ее работы на тестовой выборке. Проводится обзор существующих методов прореживания, которые принадлежат к разным группам подходов в зависимости от их свойств, таких как зависимость от входных данных и необходимость рассмотрения каналов сети в совокупности. Для решения поставленной задачи предлагаются подходы к сравнению каналов сети, на основе результатов которого происходит выбор удаляемых параметров. Подходы основаны на выборе эффективной метрики оценки близости каналов и кластеризации каналов. Описываются методы прореживания с использованием предложенных подходов. Рассматриваются детали программной реализации методов. Приводятся результаты экспериментального исследования эффективности предложенных методов.