ПРИМЕНЕНИЕ СВЕРТОЧНЫХ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ КЛАССИФИКАЦИИ ТОВАРОВ ЦЕЛЕВОЙ ГРУППЫ ПО ВЫДЕЛЕННЫМ ПРИЗНАКАМ (2025)

В работе рассматривается один из этапов определения кода товарной номенклатуры внешнеэкономической деятельности для товаров, входящих в целевую группу «обувь», состоящий в анализе изображений товарных позиций, присутствующих в сопроводительных документах. Приведено обоснование применения сверточных нейронных сетей для классификации изображений. Рассмотрены возможные подходы к построению специализированных нейросетевых классификаторов. Проведен сравнительный анализ эффективности подходов, основанных на дообучении существующих классификаторов (transfer learning) и на построении сверточных сетей, обученных только на размеченных данных выбранного товарного ассортимента. Исследованы вопросы получения обучающей выборки путем парсинга специализированных сайтов и получения элементов выборки с помощью систем искусственного интеллекта, специализирующихся на генерации изображений по запросу.

Издание: СИСТЕМНЫЙ АНАЛИЗ В НАУКЕ И ОБРАЗОВАНИИ
Выпуск: № 1 (2025)
Автор(ы): Поляков Филипп Алексеевич, Поляков Алексей Павлович
Сохранить в закладках