Методом Метрополиса в системе Изинг-подобных точечных диполей, расположенных на ребрах простой кубической решетки, получено температурное поведение теплоемкости, намагниченности и магнитной восприимчивости в модели, учитывающей только ближние диполь-дипольные взаимодействия, а также модели с ограниченным дальним радиусом взаимодействия. В системе присутствуют три термодинамические магнитные фазы: дальний порядок, ближний порядок и беспорядок. Фаза дальнего порядка в модели ближайших соседей отсутствует. Фаза ближнего порядка характеризуется высоким уровнем энтропии, наведенной геометрией решетки. Внешнее магнитное поле вдоль одной из базисных осей приводит к конкуренции параметров порядка в модели с ограниченным дальним радиусом взаимодействия и к исчезновению остаточной энтропии в модели учитывающей только ближние взаимодействия. Показана нелинейная зависимость критической температуры теплоемкости от концентрации разбавления системы немагнитными вакансиями в модели с ближними взаимодействиями.