ВВЕДЕНИЕ. Исследование особенностей текстовых генеративных нейронных сетей является важным шагом в развитии искусственного интеллекта. Несмотря на то, что модели показали высокую эффективность в решении различных задач в сфере журналистики и медиакоммуникаций, они имеют ряд недостатков. В процессе работы с нейросетями можно встретить как грубые грамматические, так и смысловые ошибки. Для выявления лидера по максимально продуктивной генерации текстов необходимо проведение сравнительного анализа выдаваемых различными сервисами данных.
МАТЕРИАЛЫ И МЕТОДЫ. В российском сегменте наиболее развитыми нейросетевыми сервисами являются GigaChat и YandexGPT. Для проведения сравнительного анализа выбран наиболее обсуждаемый и общепризнанный сервис – GhatGPT. Исследование проводилось на протяжении нескольких месяцев: сентябрь–декабрь 2023 г. В основе методики – филологический анализ сгенерированных текстов и сравнение точности выдачи запросов выбранных моделей.
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ. Филологический и грамматический анализ трёх моделей позволяет определить актуальность сервисов для работы в сфере журналистики и медиакоммуникаций, а также программные и технические ограничения нейросетей. Анализ показал наличие определённых паттернов у всех моделей нейросетей. Генерация осуществляется по заранее запрограммированному сценарию. Результат складывается из ряда факторов: наличие имён, аббревиатур и пожеланий, указанных в запросе. Отсутствие какой-либо цензуры показал лишь ChatGPT, остальные же модели отказывались генерировать, если в запросе были указаны запрещённые разработчиком слова или имена.
ЗАКЛЮЧЕНИЕ. Полученные выводы могут быть применены на практике в СМИ, блогинге и медиасфере. У всех трёх сервисов есть свои положительные и отрицательные стороны. Согласно результатам проведённого исследования, на данный момент лидером по генерации и обработке текстов является ChatGPT. Лидерство сервису обеспечивается за счёт широкого спектра возможностей и стабильности выдачи ответов на запросы. Однако в связи с наличием в сети Интернет большого количества информации, необходимой для быстрого обучения российских сетей, ситуация может измениться в ближайшее время.