МЕТОДИКА ПОСТРОЕНИЯ УСТОЙЧИВОЙ СИСТЕМЫ ЗАЩИТЫ НА ОСНОВЕ СОСТЯЗАТЕЛЬНОГО МАШИННОГО ОБУЧЕНИЯ В БЕСПРОВОДНЫХ СЕТЯХ 6G (2023)

Цель исследования: разработка методики аналитической обработки больших массивов данных сервисов и приложений в сетях последнего поколения для обнаружения инцидентов кибербезопасности и построения устойчивых систем защиты на основе состязательного машинного обучения. Метод исследования: анализ современных методов машинного обучения и нейросетевых технологий, синтез и формализация алгоритмов состязательных атак на модели машинного обучения. Результат исследования: в статье предложена методика построения устойчивой системы защиты от состязательных атак в беспроводных самоорганизующихся сетях последнего поколения. Формализованы основные виды состязательных атак, в том числе отравляющие атаки и атаки уклонения, а также описаны методы генерации состязательных примеров на табличные, текстовые и визуальные данные. Проведена генерация нескольких сценариев и исследовательский анализ наборов данных с помощью эмулятора DeepMIMO. Выделены потенциальные прикладные задачи бинарной классификации и прогнозирования затухания сигнала между пользователем и базовой станцией для проведения состязательных атак. Представлена алгоритмизация процессов построения и обучения устойчивой системы от состязательных атак в беспроводных сетях последнего поколения на примере эмулируемых данных.Научная новизна: представлена методика аналитической обработки больших массивов эмулируемых данных сервисов и приложений для обнаружения инцидентов кибербезопасности, которая обеспечивает задел в области исследования вопросов безопасности сложных интеллектуальных сервисов и приложений в инфраструктуре беспроводных сетей последнего поколения.

Издание: ВОПРОСЫ КИБЕРБЕЗОПАСНОСТИ
Выпуск: № 2 (54) (2023)
Автор(ы): Макарова Александра Константиновна, Шестаков Александр Викторович, Израилов Константин Евгеньевич
Сохранить в закладках