Работа посвящена повышению эффективности выполнения современных расчетных приложений на высокопроизводительных вычислительных системах. В качестве инструмента повышения эффективности рассматривается векторизация программного кода. С ее помощью однотипные скалярные операции объединяются в векторные аналоги, кратно повышая производительность. Целевой платформой являются современные микропроцессоры Intel, для которых поддержан уникальный набор векторных инструкций AVX 512. Предлагается подход к векторизации газодинамического решателя, использующего метод погруженных границ и противопотоковую схему Steger-Warming в трехмерном виде. Решатель обладает сложным программным контекстом, автоматическая векторизация которого невозможна. Рассматриваются реализация решателя, а также подходы к организации кода и приведению его к виду, пригодному для автоматической векторизации компилятором icc. Для обеспечения автоматического применения векторизации к программному коду решателя были применены три основных эквивалентных преобразования. Во-первых, вычисления, одинаковые для всех итераций проведения расчетов, включая матричные операции, были локализованы и вынесены на этап подготовки вычислений. Во-вторых, основные функции решателя были организованы в виде плоских циклов, а структуры данных представлены в виде наборов массивов. В-третьих, к гнездам циклов была применена оптимизация расщепления по условию, с помощью которой можно уменьшить степень разветвленности управления внутри тела цикла. Данные преобразования позволяют компилятору автоматически применять векторизацию кода. В результате выполненной работы достигнуто ускорение решателя в три раза за счет векторизации при вычислениях на вещественных числах двойной точности.