РАЗРАБОТКА ПРОГРАММЫ СЛЕЖЕНИЯ И КЛАССИФИКАЦИИ ОБЪЕКТА НА РОБОТИЗИРОВАННОЙ КОНВЕЙЕРНОЙ ЛИНИИ (2024)
Разработан алгоритм классификации и слежения за объектом. Алгоритм основан на использовании нейронной сети YOLOv5 для высокоточной классификации объектов в реальном времени. Разработана программная реализация алгоритма на базе языка программирования Python и библиотеки OpenCV. В ходе исследования была проведена отладка программы и оптимизация ее работы для повышения производительности и точности системы. Оценка технического решения показала, что разработанная система значительно улучшает точность и скорость обработки данных на конвейерной линии, а также обеспечивает адаптивность к изменениям в производственном процессе.