SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Монография посвящена изложению метода построения асимптотических решений нормальных автономных систем обыкновенных дифференциальных уравнений с малым параметром при некоторых производных. Описываемый метод позволяет получать асимптотические представления для траекторий таких систем на любом отрезке времени, вычислять периодические решения и находить различные характеризующие решение величины (в частности, период периодического решения).
Рассматриваемые вопросы представляют интерес при исследовании ряда механических, физических и технических задач, например, в теории релаксационных колебаний. Книга рассчитана на научных работников (математиков, механиков, физиков), на инженеров-исследователей и студентов, интересующихся дифференциальными уравнениями, теорией асимптотических методов и применением этих методов для решения прикладных задач.
Обширная монография одного из крупнейших американских математиков С. Лефшеца содержит систематическое изложение качественной теории дифференциальных уравнений. В ней рассматриваются вопросы устойчивости (в частности, устойчивости периодических решений), поведение систем в окрестностях особой точки и т. п. Особое внимание уделено двумерному случаю. Изложение ведется на высоком математическом уровне, сочетающем широту охвата со строгостью изложения.
Методы, развиваемые в книге, имеют важные практические применения в ряде отраслей физики и техники. Поэтому книга найдет широкий круг читателей — математиков (начинающих и специалистов) и научных работников различных специальностей.
Предлагаемая вниманию читателя книга выдающегося русского математика И. А. Лаппо-Данилевского содержит все его основные работы по теории функций от матриц и ее приложениям к исследованию линейных систем обыкновенных дифференциальных уравнений. В основу книги положено полное собрание сочинений И. А. Лаппо-Данилевского, опубликованное в 1934–36 гг. в “Трудах физико-математического института имени В. А. Стеклова” на французском языке и подготовленное к печати академиками Н. Е. Кочиным и В. И. Смирновым.
В настоящем издании из полного собрания сочинений исключено два мемуара, “Аналитическое продолжение ряда композиций” и “Разложение по степеням параметра”, которые не являются необходимыми при чтении основных работ И. А. Лаппо-Данилевского.
В конце книги помещена речь И. А. Лаппо-Данилевского, произнесенная им при защите диссертации.
Перевод с французского выполнен И. П. Мысовским. Общая редакция осуществлялась акад. В. И. Смирновым. Им же написана вступительная статья.
Этот курс дифференциальных уравнений представляет собой один из томов моего курса математики. Он подготовлен к печати в течение летних месяцев этого года, и появился в итоге моего довольно продолжительного изучения теории интегрирования дифференциальных уравнений, попыток ее дальнейшей разработки и стремления применить и известные, и полученные мною результаты к решению некоторых задач из области чистой и прикладной математики, а также из области инженерно-технических наук.
Только некоторые первые параграфы из первых глав этой книги представляют собой обработанный для печати материал из моих лекций студентам различных технических институтов, так как я меньше всего занимался преподаванием как раз именно теории дифференциальных уравнений; некоторые главы из середины книги отчасти являются переработкой того, что излагалось мною на лекциях аспирантам Научно-исследовательской кафедры математики в Киеве в 1928–1930 годах и аспирантам при Артиллерийской Академии РККА в Ленинграде в 1933 г.
В книге американских математиков Э. А. Коддингтона и Н. Левинсона «Теория обыкновенных дифференциальных уравнений» дается оригинальное, содержащее ряд новых результатов изложение современной теории обыкновенных дифференциальных уравнений.
Представлены следующие разделы: теоремы существования и единственности, линейные уравнения, аналитическая теория дифференциальных уравнений, асимптотика, задачи на собственные значения, теория возмущений, теория Пуанкаре — Бендиксона и теория дифференциальных уравнений на торе.
Книга будет очень полезна всем математикам, физикам и инженерам, так или иначе соприкасающимся с дифференциальными уравнениями.
Задачу об интегрировании дифференциальных уравнений можно ставить двойным образом: можно, во-первых, выбрав одно какое угодно, но определенное решение рассматриваемого уравнения, искать способы, которые позволили бы вычислить с какой угодно точностью значение этого решения при каком угодно значении независимой переменной, или же, во-вторых, можно поставить себе целью точное отыскание всех возможных решений заданного уравнения при помощи конечного числа уже известных действий или же действий, хотя и новых, но предварительно изученных.
Решая задачу об интегрировании первым из двух указанных способов, мы получаем интегрирование заданного уравнения по приближению; решая вторым способом — приходим к интегрированию в замкнутой форме.
Книга посвящена теории обыкновенных дифференциальных уравнений и основным понятиям и простейшим задачам вариационного исчисления. Излагается также метод характеристик решения уравнений с частными производными первого порядка.
Изложение основано на широком использовании аппарата линейной алгебры и на единообразном рассмотрении дифференциальных уравнений произвольного порядка путем сведения их к системам первого порядка.
По своему содержанию книга отвечает программам вузов с повышенным уровнем преподавания математики и содержит ряд существенных дополнений: приближенные методы решения дифференциальных уравнений, краевую задачу, метод прогонки, линейные системы дифференциальных уравнений с периодическими коэффициентами и др.
В конце каждой главы приводятся задачи, расширяющие и дополняющие ее содержание.
Книга предназначена для студентов высших учебных заведений.
(В) x²y’ − (bx + a)y = x⁻ᵃP(x). При этом P, a, b, α имеют тот же смысл и удовлетворяют тем же условиям, что и в (B). Подстановка y(x) = η(ξ), ξ = 1/x переводит это уравнение в уравнение (B) с переменными ξ, η вместо x, y.
Делая обратную замену в полученном для того случая асимптотическом разложении, получим асимптотическое разложение для данного случая, пригодное при малых значениях |x|.
Настоящее пособие предназначено для студентов различных специальностей РГУ нефти и газа им. И.М. Губкина. В нем подробно рассматриваются способы и приемы решения обыкновенных дифференциальных уравнений, разобраны реальные практические задачи, сводящиеся к решению таких уравнений.
В начале каждого раздела сформулированы теоретические вопросы, которые позволяют систематизировать знания по соответствующему разделу учебного курса. Приведены задачи для самостоятельного аудиторного и домашнего решения.
В приложениях представлены приемы решения обыкновенных дифференциальных уравнений, несколько расширяющие рамки стандартного курса технического вуза, а также современные компьютерные подходы к решению дифференциальных уравнений (на примере системы «Mathematica»).
Пособие будет также полезно магистрантам, аспирантам и специалистам в качестве справочного материала при решении практических задач.
В монографии рассматриваются вопросы качественной теории дифференциальных уравнений, теории устойчивости и вообще анализ и классификация решений дифференциальных уравнений. Здесь читатель найдет и новые методы исследования, и новые задачи, не встречающиеся в литературе.
В третьем издании расширена и использована при исследовании качественных вопросов глава «Теория подвижных особых точек в вещественной области», новации по методам и результатам и имеющая как теоретическое, так и прикладное значение. Шире рассматриваются в новом издании и вопросы качественной теории и методы обнаружения и построения периодических решений в области центральных и изолированных периодических решений. Добавлена и новая XIV глава «Фрагменты из элементарной конструктивной теории периодических решений автономной системы дифференциальных уравнений».
Книга рассчитана на математиков, физиков и инженер-теоретиков. Она будет полезна и студентам старших курсов механико-математических и физических факультетов.