Излагаются эффективные аналитические методы построения точных решений нелинейных уравнений математической физики и механики. Описаны методы обобщенного и функционального разделения переменных, прямой метод построения редукций (метод Кларксона — Крускала), метод поиска слабых симметрий, метод дифференциальных связей и некоторые другие методы. Показано, что точные решения одних уравнений нередко могут служить основой для построения решений более сложных родственных уравнений.
Исследуются уравнения массо- и теплопереноса, гидродинамики, теории волн, нелинейной акустики, теории горения, нелинейной оптики и др. Во всех разделах рассматриваются примеры использования методов для построения точных решений конкретных нелинейных дифференциальных уравнений с частными производными. Приведены многочисленные задачи и упражнения, позволяющие получить практические навыки применения рассматриваемых методов.
Изложение материала ведется в соответствии с принципом «от простого к сложному». Многие разделы можно читать независимо друг от друга, что облегчает работу с материалом.
Книга предназначена для широкого круга научных работников, преподавателей вузов, инженеров, аспирантов и студентов, специализирующихся в различных областях прикладной математики, механики и физики. Ее теоретический материал и упражнения могут быть использованы в курсах лекций по прикладной математике и математической физике, для чтения спецкурсов и для проведения практических занятий.